SRI SANKARA ARTS AND SCIENCE COLLEGE [AUTONOMOUS] AFFILIATED TO UNIVERSITY OF MADRAS ENATHUR, KANCHIPURAM – 631 561 DEPARTMENT OF CHEMISTRY

SYLLABUS FOR ALLIED CHEMISTRY COURSE

[2023-2024]

UNIVERSITY OF MADRAS

SRI SANKARA ARTS AND SCIENCE COLLEGE (AUTONOMOUS) Syllabus for Allied Chemistry Course.

(Effective from the academic year 2023 – 2024)

Preamble

Chemistry is the branch of science which deals with study of matter, their properties and the energy changes involved during any process. Chemical technologies enrich our quality of life by providing solutions to problems in every field. Hence study of Chemistry prepares the student to meet challenges of the future. Every learner should be encouraged to exchange ideas and thoughts which lead to develop an environment of cognitive in nature and not a one way information flow. Keeping all this in mind, the curriculum under Learning Outcome-based Curriculum Framework (LOCF) is designed.

1.Introduction

Chemistry is the study of composition and transformation of matter. A science that is central to energy production, health care, new material development for electronics and other applied fields and environmental protection. Bachelor's degree in Chemistry is the culmination of in-depth knowledge of Inorganic, Organic and Physical chemistry and specialized courses such as Pharmaceutical Chemistry, spectroscopy, Nanoscience, Forensic Science, Cosmetics & Personal Grooming, Food chemistry, Dairy Chemistry and so on. Thus, this programme helps learners in building a solid foundation for higher studies in Chemistry. The hands on experience the students gain in Practicals enable them to apply theory to solve problems in everyday life, think critically and innovatively. An aptitude for research is instilled through project work and industrial internship.

The subject Chemistry is designed as Allied for Physics, Bio-Chemistry and Biotechnology by keeping in mind the interest of learners to explore the field of chemistry. The course is planned in such a way that it allows flexibility and innovation in course design, syllabi development, teaching-learning process and quality assessment of students learning levels. The practical

sessions will help the students to gain sufficient skills in Organic compound analysis as well as quantitative analysis. Students are also encouraged to improve their scientific writing skills through various assignments.

2. LOCF

The objectives of the course are to :

- Create interest in learning chemistry; develop knowledge and understanding of chemical concepts, principles, and theories related to chemistry.
- Develop the ability to apply the knowledge and skills they have acquired to the solution of specific theoretical and applied problems in chemistry.
- Develop skills in qualitative and quantitative analysis.

3. Graduate Attributes in Chemistry

Some of the attributes of graduate with Chemistry as one of the subject are :

- Core competency: Basic knowledge of fundamental concepts of chemistry and Chemistry
- **Communication skills**: Ability to express thoughts and ideas effectively in writing and orally
- **Critical thinking:** Capability to apply analytic thought to a body of knowledge; analyse, evaluate and identify relevant assumptions, critically evaluate practices, policies and theories by following scientific approach to knowledge development
- **Problem-solving:** Expected to be equipped with problem-solving skills.
- **Research-skills:** Ability to define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, ability to plan, execute and report the results of an experiment

4. Qualification Descriptors

The qualification descriptors for a Bachelor's Degree program with Chemistry as one of the elective or allied subject may include the following:

- Use knowledge, understanding and skills required for identifying problems and issues relating to chemistry.
- Apply one's subject knowledge and transferable skills to identify and analyse problems and issues and solve complex problems with well-defined solutions.
- Address one's own learning needs relating to current and emerging areas of study relating to chemistry.
- Demonstrate subject-related and transferable skills that are relevant to chemistry related job trades and employment opportunities

5.Programme Specific Outcomes (PSO)

5.1 [For B.Sc., Biochemistry]

PSO1: Placement:

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2: Entrepreneur:

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations

PSO3: Research and Development:

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4: Contribution to Business World:

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO5: Contribution to the Society:

To contribute to the development of the society by collaborating with stake holders for mutual benefit

5.2 [For B.Sc., Physics]

PSO1: Placement:

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2: Entrepreneur:

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations

PSO3: Research and Development:

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4: Contribution to Business World:

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO5: Contribution to the Society:

To contribute to the development of the society by collaborating with stake holders for mutual benefit

5.3 [For B.Sc., Biotechnology]

PSO1: Disciplinary Knowledge:

Understand the fundamental principles, concepts, and theories related to Biotechnology,. Also, exhibit proficiency in performing experiments in the laboratory.

PSO2: Critical Thinking:

Analyse complex problems, evaluate information, synthesize information, apply theoretical concepts to practical situations, identify assumptions and biases, make informed decisions and communicate effectively

PSO3: Problem Solving:

Employ theoretical concepts and critical reasoning ability with technical skills to solve problems, acquire data, analyze their physical significance and explore new design possibilities.

PSO4: Analytical & Scientific Reasoning:

Apply scientific methods, collect and analyse data, test hypotheses, evaluate evidence, apply statistical techniques and use computational models.

PSO5: Research related skills:

Formulate research questions, conduct literature reviews, design and execute research studies, communicate research findings and collaborate in research projects.

6. CURRENT SYLLABUS

6.1 ALLIED CHEMISTRY SYLLABUS FOR B.Sc., BIOCHEMISTRY

(w.e.f 2023 - 2024)

(a) ALLIED CHEMISTRY-I

Title of the Paper		ALLIED CHEMISTRY-I								
Category of the course	Year	Semester	Credits	Instructional hours per week	Hours	Course code				
Allied	Ι	Ι	3	5	60					
Objectives of the course	This c	 This course aims at providing knowledge on Basics of atomic orbitals, chemical bonds, hybridization fundamentals of organic chemistry Nuclear chemistry and industrial chemistry Importance of speciality drugs and Separation and purification techniques. 								
			Sylla	bus						
Units			Co	ntents		No.of Hours				
Ι	Chen antib Hydr magr Nucl Isoto nucle - ma differ	MICAL BOND nical Bondin onding and r rogen, Helium, netic properties. ear Chemistry nes and Isomer ear reactions- gr ss defect - calc rences – Stell	ng: Molect non-bonding Nitrogen; y: Fundame rs-Difference roup displace culations. No ar energy.	UCLEAR CHEMISTRY cular Orbital Theory- orbitals. M. O diagr discussion of bond or ntal particles - Isotopes, es between chemical react ement law. Nuclear bindin uclear fission and nuclear Applications of radiois edicinal applications.	rder and Isobars, tions and ag energy fusion -	12				

	UNIT II	
	INDUSTRIAL CHEMISTRY	
П	Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required).	12
	Silicones: Synthesis, properties and uses of silicones.	
	Fertilizers: Urea, ammonium sulphate, potassium nitrate, NPK fertilizer, superphosphate, triple superphosphate.	
	UNIT III	
	FUNDAMENTAL CONCEPTS IN ORGANIC CHEMISTRY	
	Hybridization: Orbital overlap hybridization and geometry of CH_4, C_2H_4, C_2H_2 and C_6H_6 .	12
Ш	Polar Effects: Inductive effect and consequences on Ka and K_b of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric-examples and explanation.	
	Reaction mechanisms: Types of reactions- aromaticity-aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation.	
	Heterocyclic Compounds : Preparation, properties of pyrrole and pyridine.	
	UNIT IV	
	DRUGS AND SPECIALITY CHEMICALS	
IV	Definition, structure and uses: Antibiotics viz.,Penicillin, Chloramphenicol and Streptomycin; Anaesthetics viz., Chloroform and ether; Antipyretics viz., aspirin, paracetamol and ibuprofen; Artificial Sweeteners viz., saccharin, Aspartame and cyclamate; Organic Halogen compounds viz., Freon, Teflon.	12

	UNIT V:	
	ANALYTICAL CHEMISTRY	
V	Introduction to qualitative and quantitative analysis. Principles of volumetric analysis.	12
	Separation and purification techniques: extraction, distillation and crystallization.	
	Chromatography: Principle and application of column, Paper and Thin layer chromatography.	
TOTAL		60
	 house, Chennai, First edition,2009. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publica Karur,2006. ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Con New Delhi, Twenty third edition,2012. P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sultan C 	npany,

2. B.K, Sharma, Industrial Chemistry; GOEL Publishing house, Meerut, Sixteenth edition, 2014.

3. Jayashree Gosh, Fundamental Concepts of Applied Chemistry; Sultan & Chand, Edition 2006.

On the completion of the course, students will be able to:

CO No.	COURSE OUTCOMES
CO-1	State the theories of chemical bonding, nuclear reactions and its applications.
CO-2	Evaluate the efficiencies and uses of various fuels and fertilizers
CO-3	Explain the type of hybridization, electronic effect and mechanism involved in the organic reactions.
CO-4	Demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.
CO-5	Analyse various methods to identify an appropriate method for the separation of chemical components.

CO-PO MAPPING

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2
CO2	3	2	1	3	2
CO3	3	1	2	3	2
CO4	3	2	3	3	2
CO5	3	2	3	2	2
TOTAL	15	10	10	14	10
AVERAGE	3.0	2.0	2.0	2.8	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	1	1	1
CO3	3	2	1	2	2
CO4	3	2	1	2	2
CO5	3	1	2	3	3
TOTAL	15	10	8	10	10
AVERAGE	3.0	2.0	1.6	2.0	2.0

(b) ALLIED CHEMISTRY PRACTICAL-I

Title of the Paper	*ALLIE	*ALLIED CHEMISTRY PRACTICAL-I								
Category of the course	hours per week					Course code				
Allied	Ι	Ι	2	3	24					
Objectives of the course	This •	 This course aims to provide knowledge on the Basics of preparation of solutions. Principles and practical experience of volumetri 								
			Syl	labus						
Practical			Content			No.of Hours				
 VOLUMETRIC ANALYSIS 1. Estimation of sodium hydroxide using standard sodium carbonate. 2. Estimation of hydrochloric acid using standard oxalic acid. 3. Estimation of ferrous sulphate using standard Mohr's salt. 4. Estimation of oxalic acid using standard ferrous sulphate. 5. Estimation of potassium permanganate using standard sodium hydroxide. 6. Estimation of magnesium using EDTA. 7. Estimation of ferrous ion using diphenyl amine as indicator. 						24				
TOTAL						24				
		•		daivelu, Basic Pri 7.	nciples of Pra	actical Chemistr				

* Practical examination will be conducted at the end of SECOND semester.

On the completion of the course, students will be able to:

COs.	COURSE OUTCOMES
CO-1	Design, carry out, record and interpret the results of volumetric titration.
СО-2	Analyse the chemical constituents in allied chemical products.
CO-3	Gain an understanding of the use of standard flask and volumetric pipettes, burette.
CO-4	Apply their skill in the analysis of water/hardness

CO-PO MAPPING

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2
CO2	3	3	2	3	2
CO3	3	3	2	3	2
CO4	3	3	3	1	2
TOTAL	12	12	10	10	8
AVERAGE	3.0	3.0	2.5	2.5	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	3	1	1
CO3	3	2	3	1	1
CO4	3	3	1	2	2
TOTAL	12	10	10	6	6
AVERAGE	3.0	2.5	2.5	1.5	1.5

(c) ALLIED CHEMISTRY-II

Title of t Paper	he	ALLIED CHEMISTRY-II							
Category cour		Year	Semester	Credits	Instructional hours per week	Hours	Cour	urse code	
Allied		Ι	II	3	5	60			
Objecti the co		 Amino Acids and Essential elements of biosystem. Understand the concepts of kinetics and catalysis Provide fundamentals of electrochemistry and photochem 							
				-	labus				
Units		Contents					No.of Hours		
Ι	Co- Defi - Pa ,[Cc Chlo quan Wat	ordination inition of te uling's the o(CN)6] ³⁻ C orophyll (ei ntitative an ter Techno	Chemistry erms - IUPA ory – Postu Chelation - I lementary i alysis. logy: Hard OTA methoo	y: AC Nome lates - Ap Biological dea) - Apj ness of w	ND WATER TEC nclature- Werner's plications to [Ni(C role of Hemoglob plications in qualit ater, determination method-Purificatio	theory - EAN O)4], [Ni(CN in and ative and n of hardness c)4] ²⁻	12	
Π	CAR Class Discu Gluco	Unit II CARBOHYDRATES Classification, preparation and properties of glucose and fructose. Discussion of open chain ring structures of glucose and fructose. Glucose-fructose interc onversion. Preparation and properties of sucrose, starch and cellulose.						10	

III	UNIT III AMINO ACIDS AND ESSENTIAL ELEMENTS OF BIOSYSTEM Classification - preparation and properties of alanine, preparation of dipeptides using Bergmann method - Proteins- classification – structure - Colour reactions – Biological functions – nucleosides -nucleotides – RNA and DNA – structure. Essentials of trace metals in biological system-Na, Cu, K, Zn, Fe, Mg.	12
	UNIT IV	
	ELECTROCHEMISTRY	
IV	Galvanic cells - Standard hydrogen electrode - calomel electrode - standard electrode potentials -electrochemical series. Strong and weak electrolytes - ionic product of water -pH, pKa, pKb. Conductometric titrations - pH determination by colorimetric method – buffer solutions and its biological applications - electroplating - Nickel and chromeplating – Types of cells -fuel cells-corrosion and its prevention.	14
	UNIT V	
v	PHOTOCHEMISTRY Grothus - Drapper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen -chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).	12
TOTAL		60
TEXT B	 OOKS 1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mount pu house, Chennai, First edition,2009. 2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publ Karur,2006. 	-

- 3. ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Company, New Delhi, Twenty third edition,2012.
- 4. P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sultan Chand & sons,

New Delhi, Twenty ninth edition, 2007.

REFERENCE BOOKS

- 1. Arun Bahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Company, New Delhi, Twenty third edition, 2012.
- 2. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan Chand & Sons, New Delhi, Twenty ninth edition, 2007.
- 3. P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and Company, New Delhi, Twentieth edition, 2007.
- 4. B.R.Puri, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry; Vishal Publishing Co., New Delhi, Forty seventh edition, 2018.
- **5.** B.K,Sharma, Industrial Chemistry; GOEL Publishing house,Meerut, Sixteenth edition, 2014.

COURSE OUTCOMES (CO)

On the completion of the course, students will be able to:

CO No.	COURSE OUTCOMES
CO-1	Write the IUPAC name for complex, different theories to explain the bonding in coordination compounds and water technology
CO-2	Explain the preparation and property of carbohydrate.
CO-3	Enlighten the biological role of transition metals, amino acids and nucleic acids.
CO-4	Apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells.
CO-5	Outline the various type of photochemical process.

CO-PO MAPPING

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2
CO2	3	2	1	3	2
CO3	3	1	2	3	2
CO4	3	2	3	3	2
CO5	3	2	3	2	2
TOTAL	15	10	10	14	10
AVERAGE	3.0	2.0	2.0	2.8	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	1	1	1
CO3	3	2	1	2	2
CO4	3	2	1	2	2
CO5	3	1	2	3	3
TOTAL	15	10	8	10	10
AVERAGE	3.0	2.0	1.6	2.0	2.0

(d) ALLIED CHEMISTRY PRACTICAL-II

Title of the Paper		e ALLIED CHEMISTRY PRACTICAL-II							
Category o course	of the	Year	Semester	Credits	Instructional hours per week	Hours	Course code		
Allied	l	Ι	II	2	3	24			
		This	course aims	to provide	e knowledge on the				
Objectives the course		•	Different	types of o	anic functional grou rganic compounds w	ith respect to the	r properties.		
		•	• Determination of elements in organic compounds.						
				Syl	labus				
Practical		Contents					No.of Hours		
	SY	STEMATI	C ANALYS	SIS OF OI	RGANIC COMPOU	JNDS			
Ι		(a) (b) I (c) T	primary am Detection of Го distinguis	group test iine, amide elements (h between	s [phenol, acids (mo s (mono & di), aldel N, S, Halogens). aliphatic and aroma	nyde and glucose			
		(d) To distinguish – Saturated and unsaturated compounds.					24		

On the completion of the course, students will be able to:

COs.	COURSE OUTCOMES
CO-1	Analyse aliphatic and aromatic property of organic compounds.
CO-2	Apply their skill in the detection of special elements.
CO-3	Analyse saturated and unsaturated nature of organic compounds
CO-4	Analyse the presence of functional groups.

CO-PO MAPPING

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2
CO2	3	3	2	3	2
CO3	3	3	2	3	2
CO4	3	3	3	1	2
TOTAL	12	12	10	10	8
AVERAGE	3.0	3.0	2.5	2.5	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	3	1	1
CO3	3	2	3	1	1
CO4	3	3	1	2	2
TOTAL	12	10	10	6	6
AVERAGE	3.0	2.5	2.5	1.5	1.5

6.2 ALLIED CHEMISTRY SYLLABUS FOR B.Sc., BIOTECHNOLOGY w.e.f (2023 – 2024)

(a) ALLIED CHEMISTRY

Title of th Paper	e	ALLIE	D CHEMIS	ΓRY					
Category the course		Year	Semester	Credits	dits Instructional Hours Cou hours per week				
Allied		Ι	Ι	3	5	60			
 Objectives of the course Basics of atomic orbitals, chemical bonds, hybridization fundamentals of organic chemistry Nuclear chemistry and industrial chemistry Importance of speciality drugs 						ion and			
			Separate	1	ification technique				
Units				Con	tents			No.of Hours	
	Cl bo	HEMICAL nemical nding and	Bonding: 1 non-bondi	Molecula ng orbita	CLEAR CHEMIST r Orbital Theory ls. M.O diagrams ond order and mag	y-bonding, for Hydrog			
Ι	Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotopes, and Isomera Differences between chemical reactions and								

	Unit II	
	INDUSTRIAL CHEMISTRY	
П	Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required).	12
	Silicones: Synthesis, properties and uses of silicones.	
	Fertilizers: Urea, ammonium sulphate, potassium nitrate, NPK fertilizer, superphosphate, triple superphosphate.	
	UNIT III	
	FUNDAMENTAL CONCEPTS IN ORGANIC CHEMISTRY	
III	Hybridization: Orbital overlap hybridization and geometry of CH_4, C_2H_4 , C_2H_2 and C_6H_6 .	12
	Polar Effects: Inductive effect and consequences on Ka and K_b of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric-examples and explanation.	12
	Reaction Mechanisms: Types of reactions- aromaticity-aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation.	
	Heterocyclic Compounds : Preparation, properties of pyrrole and pyridine.	
	UNIT IV	
	DRUGS AND SPECIALITY CHEMICALS	
IV/	Definition, structure and uses: Antibiotics viz., Penicillin,	
IV	Chloramphenicol and Streptomycin; Anaesthetics viz., Chloroform	
	and ether; Antipyretics viz., aspirin, paracetamol and ibuprofen; Artificial	12
	Sweeteners viz., saccharin, Aspartame and cyclamate; Organic Halogen compounds viz., Freon, Teflon.	

	UNIT V:	
	ANALYTICAL CHEMISTRY	
V	Introduction qualitative and quantitative analysis. Principles of volumetric analysis.	12
	Separation and purification techniques: extraction, distillation and crystallization.	
	Chromatography: principle and application of column, paper and thin layer chromatography.	
TOTAL		60
TEXT BO 1. V First	Veeraiyan, Textbook of Ancillary Chemistry; High mount publishing house	e, Chennai,
		2006
	Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur,	
	ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Comp	pany, New
Delh	ii, Twenty third edition,2012.	
4. P.I	L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sultan Chand & sor	ıs,
New	Delhi, Twenty ninth edition, 2007.	
REFEREN	NCE BOOKS	
1. P.L.	Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and	Company,
Ne	ew Delhi, Twentieth edition, 2007.	
2. B.K 2014.	K,Sharma, Industrial Chemistry; GOEL publishing house, Meerut, Sixteen	th edition,

3. Jayashree gosh, Fundamental Concepts of Applied Chemistry;Sultan & Chand, Edition 2006.

On the completion of the course, students will be able to:

CO No.	COURSE OUTCOMES
CO-1	State the theories of chemical bonding, nuclear reactions and its applications.
CO-2	Evaluate the efficiencies and uses of various fuels and fertilizers
CO-3	Explain the type of hybridization, electronic effect and mechanism involved in the organic reactions.
CO-4	Demonstrate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars.
CO-5	Analyse various methods to identify an appropriate method for the separation of chemical components.

CO-PO MAPPING

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2
CO2	3	2	1	3	2
CO3	3	1	2	3	2
CO4	3	2	3	3	2
CO5	3	2	3	2	2
TOTAL	15	10	10	14	10
AVERAGE	3.0	2.0	2.0	2.8	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	3	3	1	1
CO3	3	3	3	2	2
CO4	3	3	3	2	2
CO5	3	2	3	3	3
TOTAL	15	14	15	10	10
AVERAGE	3.0	2.8	3.0	2.0	2.0

(b) ALLIED CHEMISTRY PRACTICAL

Title of the Paper	•	*ALLIED CHEMISTRY PRACTICAL					
Category o course	of the	f theYearSemesterCreditsInstructional hours per weekHoursCourt				Course code	
Allied		Ι	Ι	2	3	30	
This course aims to provide knowledge on the • Basics of preparation of solutions. • Principles and practical experience of volumetric analysis • Identification of organic functional groups • Different types of organic compounds with respect to the properties. • Determination of elements in organic compounds.				-			
				Syl	labus		
Practical		Contents				No.of Hours	
Ι		 VOLUMETRIC ANALYSIS 1. Estimation of sodium hydroxide using standard sodium carbonate. 2. Estimation of hydrochloric acid using standard oxalic acid. 3. Estimation of ferrous sulphate using standard Mohr's salt. 4. Estimation of oxalic acid using standard ferrous sulphate. 5. Estimation of potassium permanganate using standard sodium hydroxide. 					
Π		 SYSTEMATIC ANALYSIS OF ORGANIC COMPOUNDS The analysis must be carried out as follows: (a) Functional group tests [Acids (mono & di) amides (mono & di), aldehyde and glucose]. (b) Detection of elements (N, S, Halogens). (c) To distinguish between aliphatic and aromatic compounds. (d) To distinguish – Saturated and unsaturated compounds 					

REFERENCE BOOK

V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic Principles of Practical Chemistry; Sultan Chand & sons, Second edition, 1997.

* Practical examination will be conducted at the end of SECOND semester.

COURSE OUTCOMES (CO)

On the completion of the course, students will be able to:

CO No.	COURSE OUTCOMES
CO-1	Design, carry out, record and interpret the results of volumetric titration.
CO-2	Analyse the chemical constituents in allied chemical products.
CO-3	Apply their skill in the detection of special elements.
CO-4	Analyse the presence of functional groups.

CO-PO MAPPING

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2
CO2	3	3	2	3	2
CO3	3	3	2	3	2
CO4	3	3	3	1	2
TOTAL	12	12	10	10	8
AVERAGE	3.0	3.0	2.5	2.5	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	3	2	2
CO3	3	2	3	2	2
CO4	3	3	1	2	2
TOTAL	12	10	10	8	8
AVERAGE	3.0	2.5	2.5	2.0	2.0

6.3 ALLIED CHEMISTRY SYLLABUS FOR B.Sc., PHYSICS

(w.e.f 2023 – 2024)

(a) ALLIED CHEMISTRY -I

Title of t Paper	he	ALL	IED CHEMI	STRY -I				
Category course	of the	Year	Semester	Credits	Instructional hours per week	Hours	Course	e code
Allied		II	III	3	5	60		
Objective course	Objectives of the course This course aims at providing knowledge on • Basics of atomic orbitals, chemical bonds, hybridization • Concepts of thermodynamics and its applications. • Concepts of nuclear chemistry • Importance of chemical industries • Qualitative and analytical methods.							
				Sylla	ibus			
Units				Cont	ents			No.of Hours
Ι	Chem and 1 Nitrog Nucle Isotor nuclea mass differ	MICAL B nical Bon non-bond gen; discu ear Che nes and ar reaction defect - ences –	nding: Mole ing orbitals ussion of bon mistry: Fu Isomers-Dif ons- group d - calculation	ecular Or M. O d order a ndamenta ferences lisplacements. Nucle gy. Appli	EAR CHEMISTR bital Theory-bond diagrams for Hy nd magnetic prope al particles - Is between chemica ent law. Nuclear ear fission and re cations of radiois plications.	ling, antibon drogen, Hel rties. sotopes, Iso al reactions binding ener nuclear fusio	ium, bars, and gy - on -	12

	Unit II	
	INDUSTRIAL CHEMISTRY	
	Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required).	12
II	Silicones: Synthesis, properties and uses of silicones.	
	Fertilizers: Urea, ammonium sulphate, potassium nitrate, NPK fertilizer, superphosphate, triple superphosphate.	
	UNIT III	
	FUNDAMENTAL CONCEPTS IN ORGANIC CHEMISTRY	
ш	Hybridization: Orbital overlap, hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric- examples.	12
	Reaction Mechanisms : Types of reactions–aromaticity (Huckel's rule)– aromatic electrophilic substitution; nitration, halogenation, Friedal-Craft's alkylation and acylation.Heterocyclic compounds: Preparation, properties of pyrrole and pyridine	
	UNIT IV	
	THERMODYNAMICS AND PHASE EQUILIBRIA	
IV	Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. Statements of first law and second law of thermodynamics. Carnot's cycle and efficiency of heat engine. Entropy and its significance. Free energy change and its importance (no derivation). Conditions for spontaneity in terms of entropy and Gibbs free energy. Relationship between Gibbs free energy and entropy.	12
	Phase Equilibria: Phase rule - definition of terms in it. Applications of phase rule to water system. Two component system - Reduced phase rule and its application to a simple eutectic system (Pb-Ag).	

	UNIT V:	
	ANALYTICAL CHEMISTRY	
v	Introduction-qualitative and quantitative analysis.Principles of volumetric analysis.	12
	Separation and purification techniques: extraction, distillation and crystallization.	
	Chromatography : principle and application of column, paper and thin layer chromatography.	
TOTAL		60

TEXT BOOKS

1. V.Veeraiyan, Textbook of Ancillary Chemistry; High mount publishing house, Chennai, First edition,2009.

2. S. Vaithyanathan, Text book of Ancillary Chemistry; Priya Publications, Karur, 2006. Arun Bahl,

- 3. B.S. Bahl, Advanced Organic Chemistry; S.Chand and Company, New Delhi, Twenty third edition,2012.
- 4. P.L.Soni, H.M. Chawla, Text Book of Inorganic Chemistry; Sultan Chand & sons, New Delhi, Twenty ninth edition, 2007.

REFERENCE BOOKS

- 1. P.L.Soni, Mohan Katyal, Textbook of Inorganic Chemistry; Sultan Chand and Company,New Delhi, twentieth edition, 2007.
- 2. B.R.Puri ,L.R. Sharma, M.S.Pathania, Textbook Of Physical Chemistry; Vishal Publishing Co., New Delhi, Forty seventh edition, 2018.
- 3. B.K,Sharma, Industrial Chemistry; GOEL Publishing house,Meerut,Sixteenth edition, 2014.

CO No.	COURSE OUTCOMES
CO-1	Gain in-depth knowledge about the theories of chemical bonding, nuclear reactions and its applications.
CO-2	Evaluate the efficiencies and uses of various fuels and fertilizers
CO-3	Explain the type of hybridization, electronic effect and mechanism involved in the organic reactions.
CO-4	Apply various thermodynamic principles, systems and phase rule.
CO-5	Explain various methods to identify an appropriate method for the separation of chemical components.

On the completion of the course, students will be able to:

CO-PO MAPPING

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2
CO2	3	2	1	3	2
CO3	3	1	2	3	2
CO4	3	2	3	3	2
CO5	3	2	3	2	2
TOTAL	15	10	10	14	10
AVERAGE	3.0	2.0	2.0	2.8	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	1	1	1
CO3	3	2	1	2	2
CO4	3	2	1	2	2
CO5	3	1	2	3	3
TOTAL	15	10	8	10	10
AVERAGE	3.0	2.0	1.6	2.0	2.0

(b) ALLIED CHEMISTRY PRACTICAL-I

Title of the Paper	•	*ALLIF					
Category o course	Category of the courseYearSemesterCreditsInstructional hours per weekHours					Hours	Course code
Allied		II	III	2	3	24	
Objectives the course	of	This	Basics of	f preparat	ide knowledge on ion of solutions.		
		•	Principle	-	ctical experience of labus	of volumetric	analysis
Practical							No.of Hours
Ι	al Contents VOLUMETRIC ANALYSIS 1. Estimation of sodium hydroxide using standard sodium carbonate. 2. Estimation of hydrochloric acid using standard oxalic acid. 3. Estimation of ferrous sulphate using standard Mohr's salt. 4. Estimation of oxalic acid using standard ferrous sulphate. 5. Estimation of potassium permanganate using standard sodium hydroxide. 6. Estimation of magnesium using EDTA.						24
TOTAL		~					24
	katesv	varan, R.Ve	eerasamy, A Second edi		daivelu, Basic Pri 7.	nciples of Pra	actical Chemistry;

* Practical examination will be conducted at the end of FOURTH semester.

On the completion of the course, students will be able to:

COs.	COURSE OUTCOMES
CO-1	Design, carry out, record and interpret the results of volumetric titration.
CO-2	Analyse the chemical constituents in allied chemical products.
CO-3	Gain an understanding of the use of standard flask and volumetric pipettes, burette.
CO-4	Apply their skill in the analysis of water/hardness

CO-PO MAPPING

СО /РО	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2
CO2	3	3	2	3	2
CO3	3	3	2	3	2
CO4	3	3	3	1	2
TOTAL	12	12	10	10	8
AVERAGE	3.0	3.0	2.5	2.5	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	3	1	1
CO3	3	2	3	1	1
CO4	3	3	1	2	2
TOTAL	12	10	10	6	6
AVERAGE	3.0	2.5	2.5	1.5	1.5

(c) ALLIED CHEMISTRY -II

Title of t Paper	he	ALLIE	ALLIED CHEMISTRY- II							
Category course	of the	Year	YearSemesterCreditsInstructional hours per weekHoursCourse code							
Allied		II	II IV 3 5 60							
Objective the cours		•	 This course aims to provide knowledge on Co-ordination Chemistry and Water Technology Carbohydrates and Amino acids Basics and applications of electrochemistry Basics and applications of kinetics and catalysis Various photochemical phenomenon 							
Units				•	labus tents		No.of Hours			
Ι	Co Wer to [Hen qual Wat	ORDINAT ordination mer'stheor Ni(CO)4], noglobin litative and ter Techno	n Chemistry y - EAN ru [Ni(CN)4] and Chloro l quantitativ ology: Hard DTA metho	y: Definit le - Paulir ²⁻ ,[Co(CN ophyll (e e analysis	ND WATER TEC ion of terms - IUI g's theory – Postu [06] ³⁻ Chelation - lementary idea) ater, determination method-Purificatio	PAC Nomenclat lates - Applicat Biological role - Applications	ions e of			

	Unit II	
	CARBOHYDRATES AND AMINO ACIDS	
	Carbohydrates: Classification, preparation and properties of glucose,	
	fructose and sucrose. Discussion of open chain ring structures of glucose	12
II	and fructose. Glucose -fructose inter conversion. Properties of starch	
	and cellulose.	
	Amino acids: Classification - preparation and properties of alanine,	
	preparation of dipeptides using Bergmann method. RNA and DNA	
	(elementary idea only).	
	UNIT III	
	ELECTROCHEMISTRY	
III	Galvanic cells - Standard hydrogen electrode - calomel electrode -	
	standard electrode potentials -electrochemical series. Strong and weak	12
	electrolytes - ionic product of water -pH, pKa, pKb. Conductometric	
	titrations - pH determination by colorimetric method – buffer solutions and	
	its biological applications - electroplating - Nickel and chrome plating -	
	Types of cells -fuel cells-corrosion and its prevention.	
	UNIT IV	
	KINETICS AND CATALYSIS	
	Order and molecularity. Integrated rate expression for I and II	
IV	$(2A \rightarrow Products)$ order reactions. Pseudo first order reaction, methods	
	of determining order of a reaction - Half-life period - Concept of	12
	energy of activation and Arrhenius equation.	
	Catalysis-homogeneous and heterogeneous, catalyst used in Contact	
	and Haber's processes.	

V	UNIT V PHOTOCHEMISTRY Grothus-Drapper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen -chloride reaction. Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).	12
TOTAL		60
TEXT B	OOKS	
	 V.Veeraiyan, Textbook of Ancillary Chemistry; High mount publishin house, Chennai, First edition,2009. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya Publication Karur,2006. ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and Con New Delhi, Twenty third edition,2012. P.L.Soni, H.M.Chawla, Text Book of Inorganic Chemistry; Sultan Ch sons, New Delhi, Twenty ninth edition, 2007. 	s, npany,
REFERE	ENCE BOOK	
1.Arun	P.L.Soni, Mohan Katyal, Text book of Inorganic chemistry; Sultan Chand and	
	Company, New Delhi, Twentieth edition, 2007.	
2. R.Puri	, L.R.Sharma, M.S.Pathania, Text book Physical Chemistry;	
	Vishal Publishing Co., New Delhi, Forty seventh edition, 2018.	
3.B.K,S	harma, Industrial Chemistry; GOEL publishing house, Meerut, Sixteenth editi	on, 2014

On the completion of the course, students will be able to:

CO No.	COURSE OUTCOMES
CO-1	Write the IUPAC name for complex, different theories to explain the bonding in coordination compounds and water technology
CO-2	Explain the preparation and property of carbohydrate, amino acids and nucleic acids.
CO-3	Apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells.
CO-4	Identify the reaction rate, order for chemical reaction and explain the purpose of a catalyst.
CO-5	Outline the various type of photochemical process.

CO-PO MAPPING

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2
CO2	3	2	1	3	2
CO3	3	1	2	3	2
CO4	3	2	3	3	2
CO5	3	2	3	2	2
TOTAL	15	10	10	14	10
AVERAGE	3.0	2.0	2.0	2.8	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	3	3	1	1
CO3	3	3	3	2	2
CO4	3	3	3	2	2
CO5	3	2	3	3	3
TOTAL	15	14	15	10	10

AVERAGE 3.0	2.8	3.0	2.0	2.0
-------------	-----	-----	-----	-----

Level of Correlation between PSO's and CO's

(d) ALLIED CHEMISTRY PRACTICAL-II

Title of the Paper	e	ALLIED CHEMISTRY PRACTICAL-II						
Category o course	of the	Year	Semester	Credits	Instructional hours per week	Hours	Course code	
Allied		II	IV	2	3	24		
		This course aims to provide knowledge on the						
Objectives the course		 Different types of organic compounds with respect to their 						
		•	propertie Determin	nation of e	elements in organi	c compounds		
	1				labus			
Practical				Cont	tents		No.of Hours	
		The analys (a) F prima	is must be unctional g ary amine,	carried ou roup tests amides (n	RGANIC COMPO It as follows: [phenol, acids (m nono & di), aldehy s (N, S, Halogens).	ono & di) aroma de and glucose].	24	
Ι		(c) ' (d)T	To distingu		en aliphatic and ar ated and unsaturat	-	ıds	

REFERENCE BOOK

V.Venkateswaran, R.Veerasamy, A.R.Kulandaivelu, Basic Principles of Practical Chemistry; Sultan Chand & sons, Second edition, 1997.

On the completion of the course, students will be able to:

COs.	COURSE OUTCOMES
CO-1	Analyse aliphatic and aromatic property of organic compounds.
CO-2	Apply their skill in the detection of special elements.
CO-3	Analyse saturated and unsaturated nature of organic compounds
CO-4	Analyse the presence of functional groups.

CO-PO MAPPING

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2
CO2	3	3	2	3	2
CO3	3	3	2	3	2
CO4	3	3	3	1	2
TOTAL	12	12	10	10	8
AVERAGE	3.0	3.0	2.5	2.5	2.0

Level of Correlation between PO's and CO's

CO-PSO MAPPING

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	2	3	1	1
CO3	3	2	3	1	1
CO4	3	3	1	2	2
TOTAL	12	10	10	6	6
AVERAGE	3.0	2.5	2.5	1.5	1.5

Level of Correlation between PSO's and CO's

7. Teaching-Learning Process

A number of appropriate assessment methods of Chemistry will be used to determine the extent to which students demonstrate desired learning outcomes. Following assessment methodology should be adopted;

- Oral and written tests.
- Problem-solving exercises.
- Power point presentations.
- Practical assignments and laboratory reports.
- Observation of practical skills.
- Individual and group project reports.
- Peer group learning.
- Seminar presentations,

8. Assessment Methods

Evaluation Pattern: Written Examinations

- Assessments are divided into two parts: Continuous Internal Assessment (CIA) & End Semester Examination.
- Three CIA examinations are conducted for each semester.
- For Internal Evaluation (25 Marks).
- The Semester End Examination shall be conducted at the end of each semester.
- End Semester Examination (external) (75 Marks)- Duration: 3 hours

Internal Evaluation

Course	Assessment	Marks
Theory	Tests (best 2 out of 3)	10
	Attendance	5
	Seminar	5
	Assignment	5
	Total	25
Practical	Tests (best 2 out of 3)	30
	Attendance	5
	Record	5
	Total	40

9. Keywords.

Chemical bonding, Isotopes, isotones, silicones, fuels, drugs, carbohydrates, amino acids, first and second law of thermodynamics, photochemistry, kinetics, distillation, crystallization etc.