SRI SANKARA ARTS AND SCIENCE COLLEGE (AUTONOMOUS) ENATHUR, KANCHIPURAM - 631561

M.Sc., PHYSICS

REGULATION & SYLLABUS

(Effective from the academic year 2023 – 2024)

Choice Based Credit System

M.SC., DEGREE COURSE IN PHYSICS

PREAMBLE

The curriculum for the P.G. Physics for universities and colleges is revised as per Learning Outcomes- based Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

	TIONS ON LEARNING OUTCOMES-BASED CURRICULUM RAMEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Physics
Programme Code	
Duration	PG – 2 YEARS
	PO1: Problem Solving Skill
Programme Outcomes (POs)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision- making.

PO3: Ethical Value
Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
PO4: Communication Skill
Ability to develop communication, managerial and interpersonal skills.
PO5: Individual and Team Leadership Skill
Capability to lead themselves and the team to achieve organizational goals.
PO6: Employability Skill
Inculcate contemporary business practices to enhance employability skills in the competitive environment.
PO7: Entrepreneurial Skill
Equip with skills and competencies to become an entrepreneur.
PO8: Contribution to Society
Succeed in career endeavors and contribute significantly to society.
PO 9 Multicultural competence
Possess knowledge of the values and beliefs of multiple cultures and
a global perspective.
PO 10: Moral and ethical awareness/reasoning
Ability to embrace moral/ethical values in conducting one's life.
Ability to embrace moral/ethical values in conducting one's life.

	PSO1 – Placement
	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.
	PSO3 – Research and Development
	Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
	PSO4 – Contribution to Business World
Programme Specific Outcomes	To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
(PSOs)	PSO 5 – Contribution to the Society
	To contribute to the development of the society by collaborating with stakeholders for mutual benefit.
	PSO 6 Students will utilize e-resources, digital tools and techniques for widening their knowledge base.
	PSO 7 Students gain exposure to programming language and skills.
	PSO 8 Student will appreciate the interplay of mathematics, physics and technology.
	PSO 9 Students will develop adequate knowledge and skills for employment and entrepreneurship.
	PSO 10 An awareness of civic and ecological duties as good citizens and importance of human values will be inculcated in students

COMPONENT WISE CREDIT DISTRIBUTION

Credits		Sem I	Sem II	Sem III	Sem IV	Total
Part A (C	Core Theory, Core Practical,					
Project a	nd Discipline –	21	21	18	20	80
Centric/C	Generic Elective)					
Part B						
(i)	Skill – SEC	2	2	2	2	8
(ii)	Summer					2
	Internship/Industrial			2		2
	Training					
Part C – Extension Activity					1	1
Total		23	23	22	23	91

	METHODS OF EVALUATION				
Internal Evaluation	25 Marks				
External Evaluation					
	Total	100 Marks			
	METHODS OF ASSESSMENT				
Remembering (K1) Understanding (K2)	 The lowest level of questions requires s recallinformation from the course content Knowledge questions usually require studinformation in the textbook. Understanding of facts and ideas by organizing, comparing, translating, intinterpreting in their own words. The questions go beyond simple recastudents to combined at together 	lents to identify comprehending erpolating and			
Application (K3)	 Students have to solve problems by using concept learned in the classroom. Students must use their knowledge to corresponse. 				
Analyze (K4)	 Analyzing the question is one that asks breakdown something into its component Analyzing requires students to identify re motives and reach conclusions or general 	parts. asons causes or			

Evaluate (K5)	• Evaluation requires an individual to make judgment on something.
	• Questions to be asked to judge the value of an idea, a character, a work of art, or a solution to a problem.
	• Students are engaged in decision-making and problem- solving.
	• Evaluation questions do not have single right answers.
Create (K6)	• The questions of this category challenge students to get engaged in creative and original thinking.
	 Developing original ideas and problem-solving skills

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

M. Sc., PHYSICSDEGREE PROGRAMME

REGULATIONS

1. DURATION OF THE PROGRAM

- **1.1.** Two years (four semesters)
- **1.2.** Each academic year shall be divided into two semesters. The odd semesters shall consist of the period from June to November of each year and the even semesters from December to April of each year.
- **1.3.** There shall be not less than 90 working 'days for each semester.

2. ELIGIBILITY FOR ADMISSION

Pass in B.Sc., degree program with Physics as main subject with Mathematics as one of the ancillary subject or B.Sc., Applied science.

3. CREDIT REQUIREMENTS AND ELIGIBILITY FOR AWARD OFDEGREE

3.1. A Candidate shall be eligible for the award of the Degreeonly if he/she has undergone the prescribed course of study in a College affiliated to the University for a period of not less than two academic years and passed the examinations of all the four Semesters prescribed earning a minimum of **91 credits as per the distribution given in Regulation** and also fulfilled such other conditions as have been prescribed thereof.

4. COURSE OF STUDY, CREDITS AND SCHEME OF EXAMINATION

4.1 The Course Components and Credit Distribution shall consist of the following (Minimum Number of Credits to be obtained):

Semester-I	Credit	Semester-II	Credit	Semester-III	Credit	Semester- IV	Credit
1.1. Core-I Mathematical Physics	4	2.1. Core-V - Statistical Mechanics	4	3.1. Core-IX - Quantum Mechanics-II	4	4.1. Core- XIII- Nuclear and Particle Physics	4
1.2. Core-II Classical Mechanics and Relativity	4	2.2 Core-VI - Quantum Mechanics-I	4	3.2 Core-X- Condensed Matter Physics	4	4.2 Core- XIV- Spectroscopy	4

TEMPLATE FOR P.G., PROGRAMME

Total Credit P			-				91
Total	23		23		22		23
1.7 SEC - Solid waste Management	2	2.7 Skill Enhancement Course - Medical Physics	2	3.7. Internship/ Industrial Activity	2	4.7 Extension Activity	1
1.6 Generic Elective-II- Physics of Nano Science and Technology	3	2. 6 Generic Elective-IV- Quantum field theory	3	3.6. Skill Enhancement Course-2- Sewage and waste water treatment and reuse	2	4.6 Skill Enhancement Course – 3- Solar energy Utilization	2
1.5 Discipline Centric Elective-I- Crystal Growth and Thin films	3	2.5 Discipline Centric Elective -III- Bio physics	3	3.5. Discipline Centric Elective-V- Energy Physics	3	4.5 Project with Viva- Voce	6
1.4 Core IV - Practical-I	3	2.4 Core -VIII - Practical - II	3	3. 4. Core-XII- Numerical Methods and Computer Programming (FOTRAN/C) - Practical-III	3	4.4 (Industry / Entrepreneurs hip) Elective - VI- Microprocess or 8085 and Microcontroll er 8051	3
1.3 Core – III Linear and Digital ICs and Applications	4	2.3 Core – VII- Electromagnet ic theory	4	3.3. Core-XI- Numerical Methods and Computer Programming (FOTRAN/C) Theory	4	4.3 Core – XV- Practical – IV	3

4.2 Scheme	of
given separately	in

Examinations and Syllabus of each programme as

M. SC., DEGREE COURSE IN PHYSICS

COURSE STRUCTURE

COURSE	NAME OF THE	S.	SS		MAX MARKS		
COMPONENTS	COURSE	CREDITS	INST. HRS	EXAM HRS.	CIA	EXT.	
Core-I	Mathematical Physics	4	5	3	25	75	
Core-II	Classical Mechanics and Relativity	4	5	3	25	75	
Core - III	Linear and Digital ICs and Applications	4	5	3	25	75	
Core-IV	Practical – I	3	4	3	25	75	
Discipline Centric Elective -I	Crystal Growth and Thin Film Physics	3	4	3	25	75	
Generic Elective-II	Physics of Nano Science and Technology	3	4	3	25	75	
SEC-1	Solid waste management	2	3	3	25	75	
TOTAL		23	30				

FIRST SEMESTER

COURSE		ş	RS	IRS	MAX MARKS	
COMPONENTS	NAME OF THE COURSE	CREDITS	INST. HRS	EXAM HRS	CIA	EXT.
Core-V	Statistical Mechanics	4	5	3	25	75
Core-VI	Quantum Mechanics –I	4	5	3	25	75
Core-VII	Electromagnetic theory	4	5	3	25	75
Core-VIII	Practical – II	3	4	3	25	75
Discipline Centric Elective-III	Bio physics	3	4	3	25	75
Generic Elective-IV	Quantum field theory	3	4	3	25	75
Skill Enhancement Course-2	Medical Physics	2	3	3	25	75
TOTAL		23	30			

SECOND SEMESTER

THIRD SEMESTER

COURSE			S	HRS.	MA MA	AX RKS
COMPONENTS	NAME OF COURSE	CREDITS	INST. HRS	EXAM HI	CIA	EXT.
Core-IX	Quantum Mechanics-II	4	6	3	25	75
Core-X	Condensed Matter Physics	4	6	3	25	75

Core-XI	Numerical Methods and					
	Computer Programming	4	6	3	25	75
	(FOTRAN/C) Theory					
Core-XII	Numerical Methods and					
	Computer Programming	3	4	3	25	75
	(FOTRAN/C) - Practical -III					
Discipline Centric	Energy Physics	3	4	3	25	75
Elective-V	Energy Flysics	3	4	5	23	15
Skill	Sewage and waste water treatment					
Enhancement	and reuse	2	4	3	25	75
Course-3						
*Internship/	Internship / Industrial Activity	2				
Industrial Activity		2	-	-	-	-
TOTAL		22	30			
*Internship will be	carried out during the summer va	cation	of the	e first yea	ar and n	narks

*Internship will be carried out during the summer vacation of the first year and marks will be included in the Third Semester Marks Statement.

FOURTH SEMESTER

			S	RS.	MAX	X MARKS
COURSE COMPONENTS	NAME OF COURSE	CREDITS INST. HRS		EXAM HRS.	CIA	EXT.
Core-XIII	Nuclear and Particle Physics	4	6	3	25	75
Core-XIV	Spectroscopy	4	6	3	25	75
Core-XV	Practical – IV	3	4	3	25	75
Elective - VI (Industry/ Entrepreneurship)	Microprocessor 8085 and Microcontroller 8051	3	4	3	25	75
Core – XVI - Project	Project with viva voce	6	7	3	25	75

Skill						
Enhancement	Solar energy Utilization	2	3	3	25	75
course – 3				_	-	
Extension		1				
Activity						
TOTAL		22	30			

4.2. Inclusion of the Massive Open Online Courses (MOOCs) available on SWAYAM, NPTEL and other such portals approved by the University Authorities.

4.2.1. The Chairperson, Board of Studies (Both autonomous and non-autonomous colleges) consider the available MOOCs and choose the courses to be included under Core, Elective and Soft Skill category and also the number of credits for such courses based on the content and duration of course. The credit for such courses shall be included as part of the Core, Elective and Soft Skill to award the Degree. The number of credit will be decide at the University level for such courses which are relevant to more than one department such as soft skills and elective courses.

5. REQUIREMENTS FOR PROCEEDING TO SUBSEQUENTSEMESTERS

- **5.1. Eligibility:** Students shall be eligible to go to subsequent semester only if they earn sufficient attendance asprescribed therefor by the Syndicate from time to time.
- **5.2. Attendance:** All Students must earn 75% and above of attendance for appearing for the UniversityExamination. (Theory/Practical)
- **5.3.** Condonation of shortage of attendance: If a Student fails to earn the minimum attendance (Percentage stipulated), the Principals shall condone the shortage of attendance upto a maximum limit of 10% (i.e. between 65% and above and less than 75%) after collecting the prescribed fee of Rs.250/-each for Theory/Practical examination separately, (Theory Rs.250/- Per semester/Per Student: Practical Rs.250/- Per semester/Per Student) towards the condonation of shortage of attendance. Such fees collected and should be remitted to the University.

5.4.Non-eligibility for condonation of shortage of attendance:

Students who have secured less than 65 % but more than 50 % of attendance are NOT ELIGIBLE for condonation of shortage of attendance and such Students will not be permitted to appear for the regular examination, but will be allowed to proceed to the next year/next semester of

the program and they may be permitted to take next University examination by paying the prescribed condonation fee of Rs.250/- each for Theory/Practical separately. Such fees shall be remitted to the University. Name of such Students should be forwarded to the University along with theirattendance details in the prescribed format mentioning the category (3 copies). Year wise/Branch wise/Semester wise together with the fees collected from them, so as to enable them to get permission from the University and to attend the Theory/Practical examination subsequently without any difficulty.

- **5.5.Detained students for want of attendance:** Students who have earned less than 50% of attendance shall be permitted to proceed to the next semester and to complete the Program of study. Such Students shall have to repeat the semester, which they have missed by re-joining after completion of final semester of the course, by paying the fee for the break of study asprescribed by the University from time to time.
- **5.6.** Condonation of shortage of attendance for married women students: In respect of married women students undergoing PG programs, the minimum attendance for condonation (Theory/Practical) shall be relaxed and prescribed as 55% instead of 65% if they conceive during their academic career. Medical certificate from the Doctor (D.G.O) attached to the Government Hospital and the prescribed fee of Rs.250/-therefor together with the attendance details shall be forwarded to the university to consider the condonation of attendance mentioning the category.
- **5.7.Zero Percentage (0%) Attendance:** The Students, who have earned 0% of attendance, have to repeat the program (by rejoining) without proceeding to succeeding semester and they have to obtain prior permission from the University immediately to rejoin the program.
- **5.8. Transfer of Students and Credits**: The strength of the credits system is that it permits inter Institutional transfer of students. By providing mobility, it enables individual students to develop their capabilities fully by permitting them to move from one Institution to another in accordance with their aptitude and abilities.
 - 5.8.1. Transfer of Students is permitted from one Institution to another Institution for the same program with same nomenclature. Provided there is a vacancy in the respective program of Study in the Institution where the transfer is requested.

Provided the Student should have passed all the courses in the Institution from where the transferis requested.

- **5.8.2.** The marks obtained in the courses will be converted and grades will be assigned as per the University norms.
- **5.8.3.** The transfer students are eligible for classification.
- **5.8.4.** The transfer students are not eligible for Ranking, Prizes and Medals.
- **5.8.5.** Students who want to go to foreign Universitiesupto two semesters or Project Work with the prior approval of the Departmental/College Committee are allowed to get transfer of credits and marks which will

be converted into Grades as per the University norms and are eligible to get CGPA and Classification; they are not eligible for Ranking, Prizes and Medals.

5.9. Students are exempted from attendance requirements for online courses of the University and MOOCs.

6. EXAMINATION AND EVALUATION

6.1. Students shall register their names for the First Semester Examination after the admission in PG programs.

6.2. Students shall be permitted to proceed from the FirstSemester up to Final Semester irrespective of their failure in any of the Semester Examination and they should register for all the arrear courses of earlier semesters along with the current (subsequent) Semester courses.

6.3. Marks for Internal and End semester Examinations

Category	Theory	Practical
Internal Assessment	25	25
End semester (University) Examination	75	75

Course	Particulars	Marks
	Tests (2 out of 3)	10
Theory	Attendance	05
Papers	Seminars	05
	Assignments	05
	TOTAL	25
Ducation	Attendance	05
Practical Papers	Test best 2 out of 3	15
rapers	Record	05
	TOTAL	25
Project	Internal Marks (best 2 out of 3 presentations)	20
TTOJECI	Viva-Voce	20
	Project Report	60
	TOTAL	100

6.4 Procedure for Awarding Internal Marks

6.5: (i) Awarding Marks for Attendance (out of 5) Attendance below

60%= 0 marks, 61 % to 75% = 3 marks, 76 % to 90% = 4 marks and above 91%= 5marks **Conducting Practical and Project Viva-Voce Examination:** By Internal and External Examiners

By Internal and External Examiners.

6.5.1. Improvement of Internal Assessment Marks:

(a) Should have cleared end-semester University examination with more than 50% Marks in PG.

- (b) Should have obtained less than 30% marks in the Internal Assessment
- (c) Should be permitted to improve internal assessment within N+2 years where N is denoted for number of years of the programme.
- (d) Chances for reassessment will be open only for 25% of all core courses in Colleges and only one chance per course will be given.
- (e) The Principal will decide based on the request for reassessment and designate a faculty member of the department to conduct the examination and evaluation.
- (f) The reassessment may be based on a written test / assignment or any other for the entire internal assessment marks.
- (g) The candidate must register for examination in the on-line system along with prescribed examination fee for that course.

6.6. Question Paper Pattern for End Semester University Examination.

PART A

(50 words): Answer 10 questions out of 12 Questions: 10 x 1 Marks = 10 marks

PART B

(200 words): Answer 5 questions out of 7 Questions: 5 x 5 Marks = 25 marks

PART C

(500 words): Answer 4 questions out of 6 Questions: 4 x 10 Marks = 40 marks

Total =75 Marks

6.7. PASSING MINIMUM:

6.7.1. There shall be no Passing Minimum for Internal.

- **6.7.2.** A Student who secures not less than 50 percent marks in the External Written Examination and the aggregate (i.e. Written Examination Marks and the Internal Assessment Marks put together) respectively of each paper shall be declared to have passed the examination in that subject.
- **6.7.3.** A Student shall be declared to have passed Project Work and Viva-Voce respectively, if he/she secures a minimum 50 percent marks in the Project Work Evaluation and the Viva Voce each.
- **6.7.4.** A Student failing in any subject will be permitted to appear for the examinations again on a subsequent occasion without putting in any additional attendance.
- 6.7.5. A Student who fails in either Project Work or Viva- Voce shall be

permitted to redo the Project Work forevaluation and reappear for the Viva-Voce on a subsequent occasion, if so recommended by the Examiners.

6.7.6. A Student who successfully completes the Programme and passes the examinations of all the FOUR Semesters prescribed as per Scheme of Examinations earning **91CREDITS** shall be declared to have qualified for the Degree.

6.8. INSTANT EXAMINATION:

Instant Examinations is conducted for the students who appeared in the final semester examinations of the PG degree courses. Eligible criteria for appearing in the InstantExaminations are as follows:

- **6.8.1. Eligibility**: A Student who is having arrear only in one theory paper in the final semester examination of the PG Degree program is eligible to appear for the Instant Examinations.
- **6.8.2.** Non eligibility for one Arrear Paper: A Student who is having more than one arrear paper in the current appearance of Fourth Semester for PG Examinations is not eligible for appearing for the Instant Examinations.
- **6.8.3.** Non eligibility for Arrear in other semester: Student having arrear in any other semester is not eligible and a candidate who is absent in the current appearance is also not eligible for appearing in the Instant Examinations and those Students who have arrear in Practical/Project are not eligible for theInstant Examinations.
- **6.8.4. Non eligibility for those completed the programe:** Students who have completed their Program duration but having arrears are not eligible to appear for Instant Examinations.

6.9. RETOTALLING, REVALUATION AND PHOTOCOPY OF THE ANSWER SCRIPT

- **6.9.1 Retotaling:** PG Students not eligible for applying retotaling of their answer script.
- **6.9.2 Revaluation:** All current batch students who have appeared for their Semester Examinations are alone eligible for Revaluation of their answerscripts; Passed out students are not eligible for Revaluation.
- **6.9.3 Photocopy of the answer scripts:** Students who have applied for revaluation can download their answer scripts from the University Website after fifteen days from the date of publication of the results.
- **6.10.** The examination and evaluation for MOOCs will be as per the requirements of the Courses and will be specified at the beginning of the Semester in which such courses are offered and will be notified by the

University

7. CLASSIFICATION OF SUCCESSFUL STUDENTS

7.1 Students who secured not less than 60 % of aggregate marks (Internal + External) in the whole examination shall be declared to have passed the examination in the **First Class.** All other successful Students shall be declared to have passed in **Second Class**. Candidates who obtain 75% of the marks in the aggregate (Internal + External) shall be deemed to have passed the examination in **First Class with Distinction**, provided they pass all the examinations (theory papers, practical, project and viva-voce) prescribed for the course in the First appearance.

8. GRADING SYSTEM

8.1.Minimum Credits to be earned: For TWO year Program: Best 91 Credits: 80 Credits (Core Theory/practical, Project and Discipline centric/ Generic Elective, 10 Credits (SEC, Internship) Extension – 1 credits).

8.2. Marks and Grades

8.2.1. The following table shows the marks, grade points, letter grades and classification to indicate the performance of the student:

RANGE OF MARKS	GRADE POINTS	LETTER GRADE	DESCRIPTION
90-100	9.0-10.0	0	Outstanding
80-89	8.0-8.9	D+	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	A+	Very Good
60-69	6.0-6.9	А	Good
50-59	5.0-5.9	В	Average
00-49	4.0-4.9	U	Re-appear
ABSENT	0.0	AAA	ABSENT

8.2.2. GPA (Grade Point Average) for a Semester: = $\Sigma^{(G)}(G) + \Sigma^{(G)}(G)$

 $\sum iCiGi \div \sum iCi$

Sum of the multiplication of grade points by the credits of the courses \div Sum of the credits of the courses in a semester

8.2.3. CGPA (Cumulative Grade Point Average) For the entire program: = ∑n∑iCniGni ÷ ∑n∑iCni CGPA =Sum of the multiplication of grade pointsby the credits of the entire programme ÷ Sum of the credits of the courses of the entire

programme Where,

Ci = Credits earned for course i in any semester Gi = Grade Point obtained for course i in any semester n = Semester in which such courses were credited

CGPA	GRADE	CLASSIFICATION
		OF FINALRESULT
9.5-10.0	O +	First Class -
9.0 and above but below 9.5	Ο	Exemplary *
8.5 and above but below 9.0	D + +	First Class with
8.0 and above but below 8.5	D +	Distinction *
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A + +	First Class
6.5 and above but below 7.0	A +	
6.0 and above but below 6.5	А	
5.5 and above but below 6.0	B +	Second Class
5.0 and above but below 5.5	В	
0.0 and above but below 5.0	C +	Re-appear

8.3. Letter Grade and Class

* The candidates who have passed in the first appearance and within the prescribed semester of the PGProgramme (Major, Allied and Elective courses alone) are eligible.

9. RANKING

9.1.Students who pass all the examinations prescribed for the program in the first appearance itself are aloneeligible for Ranking / Distinction, Provided in the case of candidates who pass all the examinations prescribed for the program with a break in the First Appearance due to the reasons as furnished in the Regulations under **5** are only eligible for Classification.

10. CONCESSIONS FOR DIFFERENTLY-ABLED STUDENTS

- **10.1.Dyslexia students:** For students who are mentally disabled, having disability and mental retardation, who are slow learners, who are mentally impaired having learning disorder and seizure disorder and students who are spastic and cerebral Palsy, the following concessions shall be granted, Provided the request is duly certified by the Medical Board of the Government Hospital/ General Hospital/ District headquarters Hospitals.:
 - a. One-third of the time of paper as extra time in the examination
 - b. Leniency in overlooking spelling
 - c. Amanuensis for all PG programme provided the request is duly certified by the Medical Board of the Government Hospital/ General

Hospital/ District headquarters Hospitals and they shall be declared qualified for the degree if they pass the other examinations prescribed for the degree.

10.2. Visually Challenged Students

- a. Exempted from paying examination fees.
- b. A scribe shall be arranged by the college and the scribe be paid as per the college decision.

11. MAXIMUM PERIOD FOR COMPLETION OF THEPROGRAMS TO QUALIFY FOR A DEGREE

- **11.1.** A Student who for whatever reasons is not able tocomplete the programme within the normal period (N) or the Minimum duration prescribed for the programme, may be allowed two years period beyond the normal period to clear the backlog tobe qualified for the degree. (Time Span = N + 2 years for the completion of programme.)
- **11.2.** In exceptional cases like major accidents and child birth, an extension of one year be considered beyond maximum span of time (Time Span = N + 2 + 1 years for the completion of programme).
- **11.3.** Students qualifying during the extended period, shall not be eligible for **RANKING.**

FIRST SEMESTER

MATHEMATICAL PHYSICS

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	<u> </u>
	MATHEMATICAL PHYSICS	Core				4	5	75

Pre-Requisites
Knowledge of Matrices, vectors, differentiation, integration, differential equations
Learning Objectives

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program
- > To extend their manipulative skills to apply mathematical techniques in their fields
- > To help students apply Mathematics in solving problems of Physics

UNITS	Course Details
UNIT-I: LINEAR VECTOR SPACE	Basic concepts – Definitions- examples of vector space – Linear independence – Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure – linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation
UNIT-II: COMPLEX ANALYSIS	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and coaxial cylinders
UNIT-III: MATRICES	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization
UNIT-IV: FOURIER TRANSFORMS & LAPLACE TRANSFORMS	Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions - Application - Laplace equation: Potential problem in a semi - infinite strip

	Second order differential equation- Sturm-Liouville's theory - Series solution				
	with simple examples - Hermite polynomials - Generating function -				
UNIT-V:	Orthogonality properties - Recurrence relations - Legendre polynomials -				
DIFFERENTIAL	Generating function - Rodrigue formula - Orthogonality properties - Dirac				
EQUATIONS	delta function- One dimensional Green's function and Reciprocity theorem -				
EQUATIONS	Sturm-Liouville's type equation in one dimension & their green's function.				

UNIT - VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,
PROFESSIONAL	Competitive Examinations, Employable and Communication Skill
COMPONENTS	Enhancement, Social Accountability and Patriotism
	1. George Arfken and Hans J Weber, 2012, Mathematical Methods for
	Physicists – A Comprehensive Guide (7th edition), Academic press.
	2. P.K. Chattopadhyay, 2013, Mathematical Physics (2 nd edition), New
	Age, New Delhi
	3. A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition
TEXT BOOKS	(Paperback), New Age International Pvt.Ltd., India
	4. B. D. Gupta, 2009, Mathematical Physics (4th edition),
	Vikas Publishing House, New Delhi.
	5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh
	Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.
	1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern,
	New Delhi,
	2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics,
	3rd Ed. Narosa, New Delhi.
	3. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill,
REFERENCE	New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley,
BOOKS	Reading, Massachusetts.
	4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition,
	Affiliated EastWest, New Delhi.
	5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering
	Mathematics, 6 th Edition, International Edition, McGraw-Hill, New
	York
	1. <u>www.khanacademy.org</u>
	2. <u>https://youtu.be/LZnRlOA1_2I</u>
WEB SOURCES	3. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath</u>
WED SOURCES	4. <u>https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_R</u>
	<u>YTEU27vS_SIED56gNjVJGO2qaZ</u>
	5. https://archive.nptel.ac.in/courses/115/106/115106086/

COURSEOUTCOMES:

At the end of the course the student will be able to:

CO1	Understand use of bra-ket vector notation and explain the meaning of complete	K1 K2
	orthonormal set of basis vectors, and transformations and be able to apply them	111, 112
CO2	Able to understand analytic functions, do complex integration, by applying	
	Cauchy Integral Formula. Able to compute many real integrals and infinite sums	K2, K3
	via complex integration.	
CO3	Analyze characteristics of matrices and its different types, and the process of	IZ A
	diagonalization.	N 4

CO4 Solve equations using Laplace transform and analyze the Fourier transformations	
of different function, grasp how these transformations can speed up analysis and	K4, K5
correlate their importance in technology	
CO5 To find the solutions for physical problems using linear differential equations and	
to solve boundary value problems using Green's function. Apply special	K2, K5
functions in computation of solutions to real world problems	
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course out comes (CO)for each course with program outcomes (PO)and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

CLASSICAL MECHANICS AND RELATIVITY

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CLASSICAL MECHANICS AND RELATIVITY	Core				4	5	75

Pre-Requisites

Knowledge of fundamentals of mechanics, Foundation in mathematical methods.

Learning Objectives

- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details							
UNIT I:	Mechanics of a single particle – mechanics of a system of particles –							
PRINCIPLES OF	onservation laws for a system of particles – constraints – holonomic &							
CLASSICAL	non-holonomic constraints - generalized coordinates - configuration							
MECHANICS	space – transformation equations – principle of virtual work.							
UNIT II:	D'Alembert's principle – Lagrangian equations of motion for							
LAGRANGIAN	conservative systems – applications: (i) simple pendulum (ii) Atwood's							
FORMULATION	machine (iii) projectile motion.							
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.							
UNIT IV: SMALL OSCILLATIONS	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.							
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations							
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism							

	1. H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson
	Edu.
	2. J. C. Upadhyaya, <i>Classical Mechanics</i> , Himalaya Publishing. Co.
	New Delhi.
	3. R. Resnick, 1968, Introduction to Special Theory of Relativity,
TEXT BOOKS	
	Wiley Eastern, New Delhi.
	4. R. G. Takwala and P.S. Puranik, Introduction to Classical
	Mechanics – Tata – McGraw Hill, New Delhi, 1980.
	5. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw
	Hill, 2001
	1. K. R. Symon, 1971, <i>Mechanics</i> , Addison Wesley, London.
	2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied,
REFERENCE BOOKS	Kolkata.
	3. Gupta and Kumar, Classical Mechanics, KedarNath.
	4. T.W.B. Kibble, Classical Mechanics, ELBS.
	5. Greenwood, Classical Dynamics, PHI, New Delhi.
	1. http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldstein_Cl
	assical_Mechanics_optimized.pdf
	2. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-
WEB SOURCES	editionpdf-pdf-free.html
	3. <u>https://nptel.ac.in/courses/122/106/122106027/</u>
	4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-
	2014/lecture-notes/
	5. <u>https://www.britannica.com/science/relativistic-mechanics</u>

COURSE OUTCOMES:

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.	К2
	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	К3
	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3, K5
	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K4, K5
	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

spec	specific outcomes (FSO) in the 3-point scale of STRONG (3), MEDIOM (2) and LOW (1).										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	2	3	3	3	2	2	2	3	2	2	
CO2	2	3	3	3	2	2	2	3	2	2	
CO3	2	3	3	3	2	2	2	3	2	2	
CO4	2	3	3	3	2	2	2	3	2	2	
CO5	2	3	3	3	2	2	2	3	2	2	

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

LINEAR AND DIGITAL ICs & APPLICATIONS

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	LINEAR AND DIGITAL ICs AND APPLICATIONS	Core				4	5	75

Pre-Requisites
Knowledge of semiconductor devices, basic concepts of digital and analog electronics
Learning Objectives

- > To introduce the basic building blocks of linear integrated circuits.
- > To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- > To introduce the concepts of waveform generation and introduce one special function ICs.
- Exposure to digital IC's

UNITS	Course Details
UNIT I:	
INTEGRATED	Introduction, Classification of IC's, basic information of Op-Amp 741 and
CIRCUITS AND	its features, the ideal Operational amplifier, Op-Amp internal circuit and Op-
OPERATIONAL	Amp, Characteristics.
AMPLIFIER	
UNIT II: APPLICATIONS OF	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP:
OP-AMP	Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider,
	Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL
UNIT IV: VOLTAGE REGULATOR & D to A AND A to D CONVERTERS	VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D to A AND A to D CONVERTERS: Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.

UNIT V:	CMOS LOGIC:CMOS logic levels, MOS transistors, Basic CMOS									
CMOS LOGIC,	Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-									
COMBINATIONAL	AND-INVERT gates, implementation of any function using CMOS logic.									
CIRCUITS USING	COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic									
TTL 74XX ICs	gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC									
&	7485), Decoder (IC 74138, IC 74154), BCD to									
SEQUENTIAL	7-segment decoder (IC7447), Encoder (IC74147), Multiplexer									
CIRCUITS USING	(IC74151), Demultiplexer (IC 74154).									
TTL 74XX ICs										

	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474,					
	IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit					
	asynchronous binary counter (IC 7493).					
	Expert Lectures, Online Seminars - Webinars on Industrial					
UNIT VI:	Interactions/Visits, Competitive Examinations, Employable and					
PROFESSIONAL	Communication Skill Enhancement, Social Accountability and Patriotism					
COMPONENTS						
	1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit,					
	4th edition, New Age International Pvt.Ltd.,NewDelhi,India					
	2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated					
	Circuits, 4th edition, Prentice Hall / Pearson Education, NewDelhi.					
	3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical					
	technology, S. Chand & Co.					
TEXT BOOKS	4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S.					
	Chand & Co, 12th Edition.					
	5. V. Vijayendran, 2008, Introduction to Integrated electronics					
	(Digital & Analog), S.Viswanathan Printers & Publishers Private					
	Ltd, Reprint. V.					
	1. Sergio Franco (1997), Design with operational amplifiers and					
	analog integrated circuits, McGraw Hill, New Delhi.					
	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated					
	Circuits, Wiley International, New Delhi.					
	3. Malvino and Leach (2005), Digital Principles and Applications 5th					
REFERENCE BOOKS	Edition, Tata McGraw Hill, New Delhi					
	4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson					
	Education, New Delhi.					
	5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th					
	Reprint (2000)					
	1. <u>https://nptel.ac.in/course.html/digital circuits/</u>					
	2. <u>https://nptel.ac.in/course.html/electronics/operational amplifier/</u>					
	3. https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/field-					
WEB SOURCES	effect-controlled-thyristors/					
	4. <u>https://www.electrical4u.com/applications-of-op-amp/</u>					
	5. https://www.geeksforgeeks.org/digital-electronics-logic-design-					
	tutorials/					

COURSE OUTCOMES:

At the end of the course the student will be able to:

CO1 Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems K1, K5

	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	К3
	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	K1, K3
CO4	Learn about various techniques to develop A/D and D/A converters.	K2
	Acquire the knowledge about the CMOS logic, combinational and sequential circuits	K1, K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

PRACTICAL I I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL I	Core Practical -I				3	4	75

Pre-Requisites								
Knowledge and hands on experience of basic general and electronics experiments of Physics								
Learning Objectives								
> To understand the concept of mechanical behavior of materials and calculation of same using								
appropriate equations.								
\blacktriangleright To calculate the thermodynamic quantities and physical properties of materials								

- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.

- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. Thickness of air film FP Etalon
- 8. Measurement of Band gap energy- Thermistor
- 9. Determination of Specific charge of an electron Thomson's method.
- 10. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 11. GM counter Characteristics and inverse square law.
- 12. Measurement of Conductivity Four probe method.
- 13. Molecular spectra AlO band.
- 14. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 15. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench
- 16. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 17. Construction of relaxation oscillator using UJT
- 18. FET CS amplifier- Frequency response, input impedance, output impedance
- 19. Study of important electrical characteristics of IC741.
- 20. V- I Characteristics of different colours of LED.
- 21. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 22. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 23. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer.
- 24. Construction of square wave Triangular wave generator using IC 741
- 25. Construction of a quadrature wave using IC 324
- 26. Construction of pulse generator using the IC 741 application as frequency divider
- 27. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 28. Study of J-K, D and T flip flops using IC 7476/7473
- 29. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 30. Study of Arithmetic logic unit using IC 74181.

TEXT BOOKS

- 1. Practical Physics, Gupta and Kumar, Pragati Prakasan.
- 2. Kit Developed for doing experiments in Physics- Instruction manual, R. Srinivasan, K. R Priolkar, Indian Academy of Sciences.
- 3. Electronic Laboratory Primer a design approach, S. Poornachandra, B. Sasikala, Wheeler Publishing, New Delhi.
- 4. Electronic lab manual Vol I, K A Navas, Rajath Publishing.
- 5. Electronic lab manual Vol II, K A Navas, PHI eastern Economy Edition

REFERENCE BOOKS

- 1. Advanced Practical Physics, S.P Singh, Pragati Prakasan.
- 2. An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- 4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd.
- 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.

COURSE OUTCOMES:

CO1	Understand the strength of material using Young's modulus.	К2
CO2	Acquire knowledge of thermal behaviour of the matetials.	K1
CO3	Understand theoretical principles of magnetism through the experiments.	К2
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5
CO6	Conduct experiments on applications of FET and UJT	K4
CO7	Analyze various parameters related to operational amplifiers.	K4
CO8	Understand the concepts involved in arithmatic and logical circuits using IC's	К2
000	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	К1
CO10	Analyze the applications of counters and registers	K4

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program
specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
				-						
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1

CO10	3	3	3	3	3	3	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

CRYSTAL GROWTH AND THIN FILMS				I YEAR – FIRST SEMESTER						
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks		
	CRYSTAL GROWTH AND THIN FILMS	DISCIPLINE CENTRIC ELECTIVE				3	4	75		

	Pre-Requisites					
Fundamentals of Crystal Physics						
	Learning Objectives					
\checkmark	To acquire the knowledge on Nucleation and Kinetics of crystal growth					
\triangleright	To understand the Crystallization Principles and Growth techniques					
\triangleright	To study various methods of Crystal growth techniques					
\triangleright	To understand the thin film deposition methods					

> To apply the techniques of Thin Film Formation and thickness Measurement

UNITS	Course Details
UNIT I: CRYSTAL GROWTH KINETICS	Basic Concepts, Nucleation and Kinetics of growth Ambient phase equilibrium - super saturation - equilibrium of finite phases equation of Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus - Classical theory of Nucleation - Homo and heterogeneous formation of 3D nuclei - rate of Nucleation - Growth from vapour phase solutions, solutions and melts - epitaxial growth - Growth mechanism and classification - Kinetics of growth of epitaxial films
UNIT II: CRYSTALLIZATION PRINCIPLES	Crystallization Principles and Growth techniques Classes of Crystal system - Crystal symmetry - Solvents and solutions - Solubility diagram - Super solubility - expression for super saturation - Metastable zone and introduction period - Miers TC diagram - Solution growth - Low and high temperatures solution growth - Slow cooling and solvent evaporation methods - Constant temperature bath as a Crystallizer.
UNIT III: GEL, MELT AND VAPOUR GROWTH	 Gel, Melt and Vapour growth techniques Principle of Gel techniques - Various types of Gel - Structure and importance of Gel - Methods of Gel growth and advantages - Melt techniques - Czochralski growth - Floating zone - Bridgeman method - Horizontal gradient freeze - Flux growth - Hydrothermal growth - Vapour phase growth - Physical vapour deposition - Chemical vapour deposition - Stoichiometry.
UNIT IV: THIN FILM DEPOSITION METHODS	Thin film deposition methods of thin film preparation, Thermal evaporation, Electron beam evaporation, pulsed LASER deposition, Cathodic sputtering, RF Magnetron sputtering, MBE, chemical vapour deposition methods, Sol Gel spin coating, Spray pyrolysis, Chemical bath deposition.
UNIT V: THIN FILM FORMATION	Thin Film Formation and thickness Measurement Nucleation, Film growth and structure - Various stages in Thin Film formation, Thermodynamics of Nucleation Nucleation theories, Capillarity model and Atomistic model and their comparison Structure of Thin Film, Roll of substrate, Roll of film thickness, Film thickness measurement - Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillato techniques.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits Competitive Examinations, Employable and Communication Skill Enhancement Social Accountability and Patriotism
TEXT BOOKS	 V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crysta Growth and Epitaxy (2004) 2nd edition A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution" Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA.

REFERENCE BOOKS	 J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986) P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". P. Santhana Raghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications. H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons, New York
WEB SOURCES	 B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. <u>https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrIO8kZl1D1Jp</u> <u>https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7KeTLUuBu3WF</u> <u>https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMKFHPSi9m</u> <u>https://www.youtube.com/playlist?list=PLXHedI-xbyr8xII_KQFs_R_oky3Yd1Emw</u> <u>https://www.electrical4u.com/thermal-conductivity-of-metals/</u>

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth	K1
CO2	Understand the Crystallization Principles and Growth techniques	K2, K4
CO3	Study various methods of Crystal growth techniques	К3
CO4	Understand the Thin film deposition methods	K2
CO5	Apply the techniques of Thin Film Formation and thickness Measurement	K3, K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	;

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

Elective - 2 PHYSICS OF NANOSCIENCE AND	I YEAR - FIRST SEMESTER
TECHNOLOGY	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PHYSICS OF NANOSCIENCE AND TECHNOLOGY	GENERIC ELECTIVE				3	4	75

Pre-Requisites

Basic knowledge in Solid State Physics

Learning Objectives

- 1. Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- 2. To provide the basic knowledge about nanoscience and technology.
- 3. To learn the structures and properties of nanomaterials.
- 4. To acquire the knowledge about synthesis methods and characterization techniques and its applications.

UNITS	Course Details
UNIT I: FUNDAMENTALS OF	Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology – Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D,

NANOSCIENCE AND TECHNOLOGY	1D, 0D nanostructured materials - Quantum dots – Quantum wires – Quantum wells - Surface effects of nanomaterials.
UNIT II: PROPERTIES OF NANOMATERIALS	Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior: Elastic properties – strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance – Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties – super para magnetism – Diluted magnetic semiconductor (DMS).
UNIT III: SYNTHESIS AND FABRICATION	Physical vapour deposition - Chemical vapour deposition - sol- gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition - Nanolithography: photolithography – Nanomanipulator.
UNIT IV: CHARACTERIZATIO N TECHNIQUES	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy – Photoluminescence – Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) – Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.
UNIT V: APPLICATIONS OF NANOMATERIALS	Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors – Nano-biosensors. Nano Electronics: Nanobots - display screens - GMR read/write heads - Carbon Nanotube Emitters – Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries - supercapacitors - photovoltaics.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGraw-Hill Publishing Co. (2012). Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010). Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).

	4. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002).			
	Nanotechnology and Nanoelectronics, D.P. Kothari, V. Velmurugan and Rajit Ram Singh, Narosa Publishing House			
	Pvt.Ltd, New Delhi. (2018)			
	1. Nanostructures and Nanomaterials – HuozhongGao – Imperial College Press (2004).			
	2. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA			
	3. Nano particles and Nano structured films; Preparation, Characterization and Applications, J.H.Fendler John Wiley			
REFERENCE BOOKS	and Sons. (2007)			
	4. Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al., Universities Press. (2012)			
	> The Nanoscope (Encyclopedia of Nanoscience and			
	Nanotechnology), Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics Pentagon Press, New Delhi.			
	1. <u>www.its.caltec.edu/feyman/plenty.html</u>			
WEB SOURCES	 <u>http://www.library.ualberta.ca/subject/nanoscience/guide/index.cf</u> <u>m</u> <u>http://www.understandingnano.com</u> 			
	4. <u>http://www.nano.gov</u>6. <u>http://www.nanotechnology.com</u>			

At the end of the course, the student will be able to:

	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	K1, K2
	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	K1
	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	K2, K3
	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	K4
	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	К3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	<u> </u>

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

SEC-1 - SOLID WASTE	I YEAR – FIRST SEMESTER
MANAGEMENT	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
-----------------	--------------	----------	---	---	---	---------	-------------	-------

SOLID WASTE MANAGEMENT	Skill Enhancemen		2	2	75	
	t Course – 1					

P	Pre-Requisites					
Basic knowl	Basic knowledge of solid waste and its type					
Learning O	bjectives					
To ga	in basic knowledge in solid waste management procedures					
➢ To ga	in industry exposure and be equipped to take up a job.					
➢ To ha	rness entrepreneurial skills.					
➢ To an	alyze the status of solid waste management in the nearby areas.					

> To sensitize the importance of healthy practices in waste managements

UNITS	Course Details
UNIT I: SOLID WASTE MANAGEMENT	Introduction - Definition of solid waste - Types – Hazardous Waste: Resource conservation and Renewal act – Hazardous Waste: Municipal Solid waste and non-municipal solid waste.
UNIT II: SOLID WASTE CHARACTERISTICS	Solid Waste Characteristics: Physical and chemical characteristics - SWM hierarchy - factors affecting SW generation
UNIT III: TOOLS AND EQUIPMENT	Tools and equipment - Transportation - Disposal techniques - Composting and land filling technique
UNIT IV: ECONOMIC DEVELOPMENT	SWM for economic development and environmental protection Linking SWM and climate change and marine litter.
UNIT V: INDUSTRIAL VISIT	SWM Industrial visit – data collection and analysis - presentation

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
	Interactions/Visits, Competitive Examinations, Employable and
PROFESSIONAL	Communication Skill Enhancement, Social Accountability and
COMPONENTS	Patriotism

	1 Here the set of $0 + 1^2 + 3M_{\odot} + c + M_{\odot} = \frac{1}{2} 1$
	1. Handbook of Solid Waste Management /Second Edition, George Tchobanoglous, McGraw Hill (2002).
	 Prospects and Perspectives of Solid Waste Management, Prof. B BHosett, New Age International (P) Ltd (2006).
TEXT BOOKS	 Solid and Hazardous Waste Management, Second Edition, M.N Rao, BS Publications/ BSPBooks (2020(.
	4. Integrated Solid Waste Management Engineering Principles and Management, Tchobanoglous, McGraw Hill (2014).
	 Solid Waste Management (SWM), Vasudevan Rajaram, PHI learning private limited, 2016
	 Municipal Solid Waste Management, Christian Ludwig, Samuel Stucki, Stefanie Hellweg, Springer Berlin Heisenberg, 2012
REFERENCE	 Solid Waste Management Bhide A. D Indian National Scientific Documentation Centre, New Delhi Edition 1983 ASIN: B0018MZ0C2
BOOKS	3. Solid Waste Techobanoglous George; Kreith, Frank McGraw Hill Publication, New Delhi 2002, ISBN 9780071356237
	4. Environmental Studies Manjunath D. L. Pearson Education Publication, New Delhi, 20061SBN-I3: 978-8131709122
	 Solid Waste Management Sasikumar K. PHI learning, New Delhi, 2009 ISBN 8120338693
	https://www.meripustak.com/Integrated-Solid-Waste- Management-Engineering-Principles-And-Management-Issues- 125648
WEB SOURCES	<u>https://testbook.com/learn/environmental-engineering-solid-waste-management/</u>
	https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIs <u>A-</u>

gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3QXjJ1i ACq30KofoaAmFsEALw_wcB
https://images.app.goo.gl/tYiW2gUPfS2cxdD28
https://amzn.eu/d/5VUSTDI

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1
CO2	Equipped to take up related job by gaining industry exposure	K5
CO3	Develop entrepreneurial skills	K3
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2

CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

SECOND SEMESTER

STATIS	TICAL MECHA	ANICS	I YEAR - SECOND SEMESTER						
Subjec Code		bubject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	STATISTICAL MECHANICS Core 4 5								75
		Pre-Requis	sites						
Inowledge	of Laws of the	ermodynamics, phase tran	sition, entr	opy,	ens	semb	les, pa	rtition f	function,
lassical an	d quantum statist	ics, thermal equilibrium, B	Brownian m	otior	1				
		Learning Ob	jectives						
1. To	acquire the know	ledge of thermodynamic I	potentials a	nd to	o un	derst	and ph	ase tran	sition in
ther	modynamics								
2. To	dentify the relation	onship between statistic an	d thermody	nam	ic qı	ıanti	ties		
3. To	comprehend the c	oncept of partition function	n, canonica	l and	l gra	nd ca	anonica	l ensem	bles
4. To	grasp the fundam	ental knowledge about the	three types	of					
statistics									
5. To	get in depth know	ledge about phase transitio	ons and fluc	tuati	on o	of the	rmodyr	namic p	roperties
	vary with time						2	1	•
	UNITS		Cours	e De	etails	5			

UNIT I:	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase
PHASE	transitions and Ehrenfest's classifications –Third law of Thermodynamics.
	Order parameters – Landau's theory of phase transition - Critical indices -
TRANSITIONS	Scale transformations and dimensional analysis.
UNIT II:	Foundations of statistical mechanics - Specification of states of a system -
STATISTICAL	Micro canonical ensemble - Phase space - Entropy - Connection between
MECHANICS AND	statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.
THERMODYNAMICS	
UNIT III:	
CANONICAL AND	Trajectories and density of states - Liouville's theorem - Canonical and
	grand canonical ensembles - Partition function - Calculation of statistical
GRAND	quantities - Energy and density fluctuations.
CANONICAL ENSEMBLES	
UNIT IV:	Density matrix - Statistics of ensembles - Statistics of indistinguishable
CLASSICAL AND	particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics – Ideal
	Fermi gas – Degeneracy - Bose-Einstein statistics - Plank radiation formula -
QUANTUM	Ideal Bose gas - Bose-Einstein condensation.
STATISTICS	
UNIT V: REAL GAS,	Cluster expansion for a classical gas - Virial equation of state – Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact
ISING MODEL AND FLUCTUATIONS	solutions in one dimension. Correlation of space-time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 S. K. Sinha, 1990, Statistical <i>Mechanics</i>, Tata McGraw Hill, New Delhi. B. K. Agarwal and M. Eisner, 1998, <i>Statistical Mechanics</i>, Second Edition New Age International, New Delhi. J. K. Bhattacharjee, 1996, <i>Statistical Mechanics</i>: An Introductory Text, Allied Publication, New Delhi. F. Reif, 1965, <i>Fundamentals of Statistical and Thermal Physics</i>, McGraw -Hill, New York. M. K. Zemansky, 1968, <i>Heat and Thermodynamics</i>, 5th edition, McGraw-Hill New York.

	1. R. K. Pathria, 1996, <i>Statistical Mechanics</i> , 2 nd edition, Butter WorthHeinemann, New Delhi.							
	L. D. Landau and E. M. Lifshitz, 1969, <i>Statistical Physics</i> , Pergamon Press, Oxford.							
REFERENCE BOOKS	3. K. Huang, 2002, <i>Statistical Mechanics</i> , Taylor and Francis, London							
	4. W. Greiner, L. Neiseand H.Stoecker, Thermodynamics and Statistical							
	Mechanics, Springer Verlang, New York.							
	5. A. B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied,							
	Kolkata.							
	1. <u>https://byjus.com/chemistry/third-law-of-thermodynamics/</u>							
	2. <u>https://web.stanford.edu/~peastman/statmech/thermodynamics.html</u>							
WEB SOURCES	3. <u>https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics</u>							
	4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble							
	5. <u>https://en.wikipedia.org/wiki/Ising_model</u>							

At the end of the course the student will be able to:

CO1 To examine and elaborate the effect of changes in thermodynamic quantitie	
the states of matter during phase transition	K5
CO2 To analyze the macroscopic properties such as pressure, volume, temperat	
specific heat, elastic moduli etc. using microscopic properties like intermolec	cular
forces, chemical bonding, atomicity etc.	
Describe the peculiar behaviour of the entropy by mixing two gases	K4
Justify the connection between statistics and thermodynamic quantities	
CO3 Differentiate between canonical and grand canonical ensembles and to inter	-
the relation between thermodynamical quantities and partition function	K1
CO4 To recall and apply the different statistical concepts to analyze the behaviou	
ideal Fermi gas and ideal Bose gas and also to compare and distinguish betw	veen K4. K5
the three types of statistics.	,
CO5 To discuss and examine the thermodynamical behaviour of gases under fluctua	tion
and also using Ising model	К3
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

QUANTUM MECHANICS – II YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM MECHANICS – I	Core				4	5	75

Pre-Requisites

Knowledge of Newton's laws of motion, Schrodinger's equation, integration, differentiation.

Learning Objectives

- 1. To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- 2. To describe the propagation of a particle in a simple, one-dimensional potential.
- 3. To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- 4. To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature

5. To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation
UNIT II:ONE DIMENSIONAL AND THREE- DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator
UNIT III: GENERAL FORMALISM	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal
UNIT IV: APPROXIMATI ON METHODS	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.
UNIT V: ANGULAR MOMENTUM	Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle.
UNIT VI: PROFESSIONA L COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2ndedition (37th Reprint), Tata McGraw-Hill, New Delhi,

	2010.
	2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India,
	New Delhi, 2009.
	3. David J Griffiths, Introduction to Quantum Mechanics. 4th edition,
	Pearson, 2011.
	4. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st
	Edition, S.Chand& Co., New Delhi, 1982.
	5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and
	Applications, 4 th Edition, Macmillan, India, 1984.
	1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons,
	New York, 1970.
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern
DEFEDENCE	Ltd, New Delhi, 1985.
REFERENCE	3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition,
BOOKS	Pergomon Press, Oxford, 1976.
	4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata,
	1999.
	6. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science
	International Ltd, Oxford , 2011.
	1. http://research.chem.psu.edu/lxjgroup/download_files/chem565-c7.pdf
	2. http://www.feynmanlectures.caltech.edu/III_20.html
WEB SOURCES	3. <u>http://web.mit.edu/8.05/handouts/jaffe1.pdf</u>
	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/Le
	cture_ 1.pdf
	5. <u>https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf</u>

At the end of the course the student will be able to:

	K3, K4
CO3 Can discuss the various representations, space time symmetries and formulations of time evolution	K1
	K4, K5
CO5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.	K3, K4

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

-				-						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

ELECTROMAGNETIC THEORY

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ELECTROMAGNETIC THEORY	Core				4	5	75

Pre-Requisites								
Knowledge of different coordinate systems, Laplace's equation, conducting & non-conducting								
medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma								
Learning Objectives								

- To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- > To understand Biot Savart's law and Ampere's circuital law
- To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- > To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

UNITS	Course Details
UNIT I: ELECTROSTATICS	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors – Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.
UNIT II: MAGNETOSTATICS	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static
	energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.
UNIT III:	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave
MAXWELL	equation and plane wave solution- Coulomb and Lorentz gauges - Energy
EQUATIONS	and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.

UNIT IV:	Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting
WAVE	medium - Propagation of waves in a rectangular wave guide.
PROPAGATION	Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole

UNIT V:	The Boltzmann Equation - Simplified magneto-hydrodynamic equations -
	Electron plasma oscillations - The Debye shielding problem - Plasma
ELEMENTARY	confinement in a magnetic field - Magneto-hydrodynamic waves - Alfven
PLASMA PHYSICS	waves and magnetosonic waves.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 D. J. Griffiths, 2002, Introduction to Electrodynamics, 3rd Edition, Prentice-Hall of India, New Delhi. J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic Theory, 3rd edition, Narosa Publishing House, New Delhi. J. D. Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi. J. A. Bittencourt, 1988, Fundamentals of Plasma Physics, Pergamon Press, Oxford. Gupta, Kumar and Singh, Electrodynamics, S.Chand & Co., New Delhi
REFERENCE BOOKS	 W. Panofsky and M. Phillips, 1962, Classical Electricity and Magnetism, Addison Wesley, London. J. D. Kraus and D. A. Fleisch, 1999, Electromagnetics with Applications, 5th Edition, WCB McGraw-Hill, New York. B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied, Kolkata. P. Feynman, R. B. Leighton and M. Sands, 1998, The Feynman Lectures on Physics, Vols. 2, Narosa Publishing House, New Delhi. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press, USA.
WEB SOURCES	1. http://www.plasma.uu.se/CED/Book/index.html 2. http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html 3. http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html 4. http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_Tutor_ials/ 5. https://www.cliffsnotes.com/study-guides/physics/electricity-and-magnetism/electrostatics

At the end of the course the student will be able to:

CO1 Solve the differential equations using Laplace equation and to find solutions for boundary value problems K1, K5

Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector potential for various physical problems	K2,	K3
Apply Maxwell's equations to describe how electromagnetic field behaves in different media	К3	
Apply the concept of propagation of EM waves through wave guides in optical fiber communications and also in radar installations, calculate the transmission and reflection coefficients of electromagnetic waves		K4
Investigate the interaction of ionized gases with self-consistent electric and magnetic fields	К5	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

PRACTICAL II	I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL II	Core				3	4	75

Pre-Requisites
Knowledge and handling of basic general and electronics experiments of Physics
Learning Objectives

- 1. To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- 2. To calculate the thermodynamic quantities and physical properties of materials.
- 3. To analyze the optical and electrical properties of materials.
- 4. To observe the applications of FET and UJT.
- 5. To study the different applications of operational amplifier circuits.
- 6. To learn about Combinational Logic Circuits and Sequential Logic Circuits

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Measurement of Susceptibility of liquid Quincke's method
- 4. B-H curve using CRO
- 5. Thickness of LG Plate
- 6. Arc spectrum: Copper
- 7. Determination of e/m Millikan's method
- 8. Miscibility measurements using ultrasonic diffraction method
- 9. Determination of Thickness of thin film. Michelson Interferometer
- 10. Iodine absorption spectra
- 11. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 12. Measurement of Dielectricity Microwave test bench
- 13. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility

 C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 	14. Interpreta	ation of vibrational spectra of a given material
 17. IC 7490 as scalar and seven segment display using IC7447 18. Solving simultaneous equations – IC 741 / IC LM324 19. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter 20. Construction of Current to Voltage and Voltage to Current Conversion using IC 741. 21. Construction of second order butterworth multiple feedback narrow band pass filter 22. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess-3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter - IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol II, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 4. Advanced reactical Physics, S.P. Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic Laboratory Primer a design approach, S. Poornachandra, Publishing 	15. Determir	nation of I-V Characteristics and efficiency of solar cell
 18. Solving simultaneous equations – IC 741 / IC LM324 19. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter 20. Construction of Current to Voltage and Voltage to Current Conversion using IC 741. 21. Construction of second order butterworth multiple feedback narrow band pass filter 22. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess- 3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol II, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PH eastern Economy Edition A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 	16. GM cour	nter – Absorption coefficient – Maximum range of β rays
 19. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter 20. Construction of Current to Voltage and Voltage to Current Conversion using IC 741. 21. Construction of second order butterworth multiple feedback narrow band pass filter 22. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess- 3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol II, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 	17. IC 7490	as scalar and seven segment display using IC7447
worth filter 20. Construction of Current to Voltage and Voltage to Current Conversion using IC 741. 21. Construction of second order butterworth multiple feedback narrow band pass filter 22. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess- 3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter - IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 9. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra,	18. Solving	simultaneous equations – IC 741 / IC LM324
 21. Construction of second order butterworth multiple feedback narrow band pass filter 22. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess- 3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition REFERENCE BOOKS 1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 		
 22. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess- 3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter - IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 	20. Construc	tion of Current to Voltage and Voltage to Current Conversion using IC 741.
IC74193 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess- 3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra,	21. Construc	tion of second order butterworth multiple feedback narrow band pass filter
squarer 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess-3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter - IC 7476/IC 7474 I. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition I. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra,		
 24. Construction of pulse generator using the IC 555 – Application as frequency divider 25. BCD to Excess-3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition I. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 	23. Construc	tion of Schmidt trigger circuit using IC555 for a given hysteresis – Application as
 25. BCD to Excess- 3 and Excess 3 to BCD code conversion 26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 Practical Physics, Gupta and Kumar, PragatiPrakasan Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. Electronic lab manual Vol I, K ANavas, Rajath Publishing Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition REFERENCE BOOKS A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing Electronic Laboratory Primer a design approach, S. Poornachandra, 	squarer	
26. Study of binary up / down counters - IC 7476 / IC7473 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 7. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra,	24. Construc	tion of pulse generator using the IC 555 – Application as frequency divider
 27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474 Practical Physics, Gupta and Kumar, PragatiPrakasan Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. Electronic lab manual Vol I, K ANavas, Rajath Publishing Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd Advanced Practical Physics, S.P Singh, PragatiPrakasan A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing Electronic Laboratory Primer a design approach, S. Poornachandra, 	25. BCD to I	Excess- 3 and Excess 3 to BCD code conversion
TEXT BOOKS1. Practical Physics, Gupta and Kumar, PragatiPrakasan 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ItdREFERENCE BOOKS3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing5. Electronic Laboratory Primer a design approach, S. Poornachandra,	26. Study of	binary up / down counters - IC 7476 / IC7473
 TEXT BOOKS 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 	27. Shift reg	ister and Ring counter and Johnson counter- IC 7476/IC 7474
TEXT BOOKSR.Srinivasan K.R Priolkar, Indian Academy of Sciences3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd2. Advanced Practical Physics, S.P Singh, PragatiPrakasan3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing5. Electronic Laboratory Primer a design approach, S. Poornachandra,		
 TEXT BOOKS 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition. 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Itd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 		
 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition 1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 		3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
REFERENCE BOOKS1. An advanced course in Practical Physics, D. Chattopadhayay, C. R Rakshit, New Central Book Agency Pvt. Ltd2. Advanced Practical Physics, S.P Singh, PragatiPrakasan3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing5. Electronic Laboratory Primer a design approach, S. Poornachandra,		4. Electronic lab manual Vol I, K ANavas, Rajath Publishing
 C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 		5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
 C. R Rakshit, New Central Book Agency Pvt. Ltd 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 		
 REFERENCE BOOKS 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 		1. An advanced course in Practical Physics, D. Chattopadhayay,
 REFERENCE BOOKS 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 		C. R Rakshit, New Central Book Agency Pvt. Ltd
BOOKS(Asia) Pvt. ltd4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing5. Electronic Laboratory Primer a design approach, S. Poornachandra,		2. Advanced Practical Physics, S.P Singh, PragatiPrakasan
 BOOKS (Asia) Pvt. ltd 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing 5. Electronic Laboratory Primer a design approach, S. Poornachandra, 	REFERENCE	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons
 Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing Electronic Laboratory Primer a design approach, S. Poornachandra, 		(Asia) Pvt. ltd
5. Electronic Laboratory Primer a design approach, S. Poornachandra,		4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
		Publishing
P. Sasikala, Wheeler Publishing, New Dolhi		5. Electronic Laboratory Primer a design approach, S. Poornachandra,
D. Sasikala, wheeler rubiisiinig, New Denni		B. Sasikala, Wheeler Publishing, New Delhi

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2
CO2	Acquire knowledge of thermal behaviour of the materials	K1
CO3	Understand theoretical principles of magnetism through the experiments.	K2

CO4	Acquire knowledge about arc spectrum and applications of laser	K1
CO5	Improve the analytical and observation ability in Physics Experiments	K4
CO6	Conduct experiments on applications of FET and UJT	K5
CO7	Analyze various parameters related to operational amplifiers	K4
CO8		K2
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K3
CO10	Analyze the applications of counters and registers	K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	
--	------	------	------	------	------	------	------	------	------	-------	--

CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	S	S	2	2	2	3	3
CO7	2	2	S	S	S	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Elective – I	II BIO PHYSICS	I YEAR – SECOND SEMESTER								
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks		
	BIO PHYSICS	DISCIPLINE CENTRIC ELECTIVE				3	4	75		

Pre-Requisites

Fundamental concepts of Physics and Biology

Learning Objectives

- 1. To understand the physical principles involved in cell function maintenance.
- 2. To understand the fundamentals of macromolecular structures involved in propagation of life.
- 3. To understand the biophysical function of membrane and neuron.
- 4. To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- 5. To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details
UNIT I: CELLULAR BIOPHYSICS	Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of cardiac and neuronal cells.
UNIT II: MOLECULAR BIOPHYSICS	Macromolecular structure: Protein structure – amino acids, peptide bonds, primary, secondary, tertiary and quaternary structures of proteins Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA structure and conformation. Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes, chaperons and prions.
UNIT III: MEMBRANE	Models membranes - Biological membranes and dynamics – Membrane Capacitors – Transport across cell and organelle membranes – Ion channels.
AND NEURO BIOPHYISCS	Nervous system: Organization of the nervous system –Membrane potential – Origins of membrane potential - Electrochemical potentials – Nernst equation – Goldman equation.
UNIT IV: RADIATION BIO PHYSICS	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects of gamma radiation, Radiation effects on nucleic acids and membranes, Effects on cell and organelles – UV radiation: Effects on bio-macromolecules and proteins – Radiation hazards and protection – use of radiations in cancer.
UNIT V: PHYSICAL METHODS IN BIOLOGY	Spectroscopy: UV-Visible absorption spectrophotometry – Optical Rotatory Dispersion (ORD) – Structure Determination: X-ray Crystallography, Electron spin resonance (ESR) and biological applications. Chromatography: Thin layer chromatography (TLC), Gas liquid chromatography (GLC) – Centrifugation: Differential centrifugation, density gradient centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis.
UNIT VI: PROFESSIONA L COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS	 The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013. Biophysics, Vasantha Pattabhi, N. Gautham, Narosa Publishing, 2009 Biophysics, P. S. Mishra VK Enterprises, 2010. Biophysics, M. A Subramanian, MJP Publishers, 2005.
	5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.
REFERENCE BOOKS	 Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008). Essential cell biology by Bruce Albert et al (Garland Science) Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer Verlag, Berlin (1983). Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski, (Springer science & business media). Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek
WEB SOURCES	 General Bio:<u>http://www.biology.arizona.edu/DEFAULT.html</u> Spectroscopy: <u>http://www.cis.rit.edu/htbooks/nmr/inside.htm</u> Electrophoresis:<u>http://learn.genetics.utah.edu/content/labs/gel/</u> Online biophysics programs: <u>http://mw.concord.org/modeler/</u> <u>https://blanco.biomol.uci.edu/WWWResources.html</u>

At the end of the course, the student will be able to:

CO1	Understand the structural organization and function of living cells and should able to apply the cell signaling mechanism and its electrical activities.	K2, K3
CO2	Comprehension of the role of biomolecular conformation to function.	K1
CO3	Conceptual understanding of the function of biological membranes and also to understand the functioning of nervous system.	K2, K5
CO4	To know the effects of various radiations on living systems and how to prevent ill effects of radiations.	K1, K5
CO5	Analyze and interpret data from various techniques viz., spectroscopy, crystallography, chromatography etc.,	K4
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	I

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

Elective – IV QUANTUM FIELD THEORY	I YEAR – SECOND SEMESTER
---	--------------------------

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM FIELD THEORY	GENERIC ELECTIVE				3	4	75

Pre-Requisites

Prior exposure on fundamentals of Quantum mechanics and Special Relativity will be essential.

Learning Objectives

- > To school the students about the analytical and numerical techniques of nonlinear dynamics.
 - \succ To make the students understand the concepts of various coherent structures.
 - \succ To train the students on bifurcations and onset of chaos.
 - > To educate the students about the theory of chaos and its characterization.

> To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details
UNIT I: SYMMETRY PRINCIPLES	Relativistic kinematics, relativistic waves, Klein-Gordon (KG) equation as a relativistic wave equation, treatment of the KG equation as a classical wave equation: its Lagrangian and Hamiltonian, Noether's theorem and derivation of energy-momentum and angular momentum tensors as consequence of Poincaré symmetry, internal symmetry and the associated conserved current.
UNIT II: QUANTIZATION OF KLEIN-GORDAN FIELD	Canonical quantization of the KG field, solution of KG theory in Schrödinger and Heisenberg pictures, expansion in terms of creation and annihilation operators, definition of the vacuum and N-particle eigenstates of the Hamiltonian, vacuum expectation values, propagators, spin and statistics of the KG quantum.
UNIT III: QUANTIZATION OF DIRAC FIELD	Review of Dirac equation and its quantization, use of anti- commutators, creation and destruction operators of particles and antiparticles, Dirac propagator, energy, momentum and angular momentum, spin and statistics of Dirac quanta.
UNIT IV: QUANTIZATION OF ELECTROMAGNETIC FIELDS	Review of free Maxwell's equations, Lagrangian, gauge transformation and gauge fixing, Hamiltonian, quantization in terms of transverse delta functions, expansion in terms of creation operators, spin, statistics and propagator of the photon.
UNIT V: PERTURBATIVE INTERACTION AT TREE LEVEL	Introduction to interacting quantum fields, Wick's Theorem, Feynman Diagram, Examples from quantum electrodynamics at the tree level: positron-electron and electron-electron scattering.

UNIT VI:	Expert	Lectures,	Online	Seminar	rs -	Webinar	s on	Indu	ıstrial
PROFESSIONAL	Interact	ions/Visits,	Compe	titive E	xamin	ations,	Emplo	yable	and
COMPONENTS	Commu	nication Ski	ll Enhanc	ement, So	ocial A	ccountabi	lity an	d Patri	otism

	1. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields
	2. An Introduction to Quantum Field Theory by M. Peskin and D. V.
	Schroeder
τεντ βρους	3. Quantum Field theory: From Operators to Path Integrals, 2nd edition by
TEXT BOOKS	Kerson Huang
	4. Quantum Field Theory by Mark Srednicki
	5. Quantum Field Theory by Claude Itzykson and Jean Bernard Zuber.

	1. V.B. Berestetskii, E.M. Lifshitzand L.P. Pitaevskii, Quantum Electrodynamics
DEEDDENCE	2. Introduction to the Theory of Quantized Fields by N. N. Bogoliubov and
REFERENCE	D. V. Shirkov (1959)
BOOKS	3. Quantum Field Theory by L. H. Ryder (1984)
	4. Quantum Field Theory by L. S. Brown (1992)
	5. Quantum Field Theory: A Modern Introduction by M. Kaku (1993)
	1. https://homepages.dias.ie/ydri/QFTNOTES4v2.pdf
	2. <u>https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/referencespaper</u>
WEB SOURCES	s.aspx?referenceid=2605249
WED SOURCES	3. https://archive.nptel.ac.in/courses/115/106/115106065/
	4. http://www.nhn.ou.edu/~milton/p6433/p6433.html
	5. <u>https://plato.stanford.edu/entries/quantum-field-theory/</u>

At the end of the course, the student will be able to:

CO5	Understand the concept of Feynman diagram	K2
	Summarizes the interacting field, in quantum domain, and gives a discussion on how perturbation theory is used here.	K1, K
CO3	Employ the creation and annihilation operators for quantization	K5
CO2	Enable the students to understand the method of quantization to various field	K2
COI	Understand the interconnection of Quantum Mechanics and Special Relativity	K1

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
--	------	------	------	------	------	------	------	------	------	-------

CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

SEC 2 - MEDICAL PHYSICS FIR

FIRST YEAR / SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MEDICAL PHYSICS	SEC-2				2	3	75

Pre-Requisites

Fundamentals of physiological concepts, Basics of instruments principle,

Learning Objectives

- > To understand the major applications of Physics to Medicine
- To study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
- To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- > To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

UNITS	Course Details
UNITI: X-RAYS AND TRANSDUCERS	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X- Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells– piezoelectric transducer
BLOOD	Introduction – sphygmomanometer – Measurement of heart rate – basic principles of electrocardiogram (ECG) –Basic principles of electroneurography (ENG) – Basic principles of magnetic resonance imaging (MRI).

UNIT III: RADIATION PHYSICS UNIT IV:	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film
MEDICAL IMAGING PHYSICS	 Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)
UNIT V: RADIATION PROTECTION	Principles of Radiation Protection – Protective Materials – Radiation Effects – Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 Dr.K.Thayalan ,Basic Radiological Physics, Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi, 2003. Curry, Dowdey and Murry, Christensen's Physics of Diagnostic Radiology: -Lippincot Williams and Wilkins, 1990. FM Khan, Physics of Radiation Therapy, William and Wilkins, 3rd ed, 2003. D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed, Elsevier Science, 2014. R.S. Khandpur, Hand Book of Biomedical Instrumentations, 1st ed, TMG, New Delhi, 2005.
REFERENCE BOOKS	 Muhammad Maqbool, <i>An Introduction to Medical Physics</i>, 1st ed, Springer International Publishing, 2017. Daniel Jirák, FrantišekVítek, <i>Basics of Medical Physics</i>, 1st ed, Charles University, Karolinum Press, 2018 Anders Brahme, <i>Comprehensive Biomedical Physics</i>, Volume 1, 1st ed, Elsevier Science, 2014. K. Venkata Ram, <i>Bio-Medical Electronics and Instrumentation</i>, 1st ed, Galgotia Publications, New Delhi, 2001. John R. Cameron and James G. Skofronick, 2009, Medical Physics, John Wiley Interscience Publication, Canada, 2nd edition.
WEB SOURCES	 <u>https:nptel.ac.in/courses/108/103/108103157/</u> <u>https://www.studocu.com/en/course/university-of-technology-sydney/medical-devices-and-diagnostics/225692</u> <u>https://www.technicalsymposium.com/alllecturenotes_biomed.html</u>

4.	https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-bi-by- deepraj-adhikary/78
5.	https://www.modulight.com/applications-medical/

At the end of the course, the student will be able to:

CO1 Learn the fundamentals, production and applications of X-rays.	K 1			
Understand the basics of blood pressure measurements. Learn about				
sphygmomanometer, EGC, ENG and basic principles of MRI.	K2			
CO3 Apply knowledge on Radiation Physics	K3			
CO4 Analyze Radiological imaging and filters	K4			
CO5 Assess the principles of radiation protection	K5			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

THIRD SEMESTER

	QUANTUM MECHANICS – II II	I YEAR - THIRD SEMESTER
--	---------------------------	-------------------------

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM MECHANICS – II	Core				4	6	75

Pre-Requisites

Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators, degeneracy, angular momentum techniques and commutation rules

Learning Objectives

- ▶ Formal development of the theory and the properties of angular momenta, both orbital and spin
- To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNITS	Course Details
	Scattering amplitude - Cross sections - Born approximation and its
UNIT 1:	validity – Scattering by a screened coulomb potential – Yukawa potential
SCATTERING	– Partial wave analysis – Scattering length and Effective range theory
THEORY	for s wave – Optical theorem – Transformation from centre of mass to
INEUKI	laboratory frame.
	Time dependent perturbation theory - Constant and harmonic
UNIT II:	perturbations – Fermi Golden rule – Transition probability Einstein's A
PERTURBATION	and B Coefficients – Adiabatic approximation – Sudden approximation –
THEORY	Semi – classical treatment of an atom with electromagnetic radiation –
	Selection rules for dipole radiation
UNIT III:	Klein – Gordon Equation – Charge And Current Densities – Dirac
RELATIVISTIC	Matrices – Dirac Equation – Plane Wave Solutions – Interpretation Of
QUANTUM	Negative Energy States - Antiparticles - Spin of Electron - Magnetic
MECHANICS	Moment Of An Electron Due To Spin

UNIT IV: DIRAC EQUATION	Covariant form of Dirac Equation – Properties of the gamma matrices – Traces – Relativistic invariance of Dirac equation – Probability Density – Current four vector – Bilinear covariant – Feynman's theory of positron (Elementary ideas only without propagation formalism)
UNIT V: CLASSICAL FIELDS AND SECOND QUANTIZATION	Classical fields – Euler Lagrange equation – Hamiltonian formulation – Noether's theorem – Quantization of real and complex scalar fields – Creation, Annihilation and Number operators – Fock states – Second Quantization of K-G field.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism 1. P. M. Mathews and K. Venkatesan, A Text book of Quantum
TEXT BOOKS	 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics,2nd Edition, Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi,2009 L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill Kogakusha, Tokyo, 1968 V. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New Delhi, 2005. Nouredine Zettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, 2017
REFERENCE BOOKS	 P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Edition,Oxford University Press, London, 1973. B.K.Agarwal & HariPrakash, Quantum Mechanics, 7th reprint, PHI Learning Pvt. Ltd., New Delhi, 2009. Deep Chandra Joshi, Quantum Electrodynamics and Particle Physics,1stedition,I.K.International Publishing house Pvt.Ltd., 2006 Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan India, New Delhi. E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and Sons, New York, 1970
WEB SOURCES	 <u>https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture notes/MIT8_05F13_Chap_09.pdf</u> http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-gk.pdf <u>https://web.mit.edu/dikaiser/www/FdsAmSci.pdf</u>

At the end of the course the student will be able to:

K1 - R	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	
	Demonstrate an understanding of field quantization and the explanation of the scattering matrix.	К5
	Introduce the concept of covariance and the use of Feynman graphs for depicting different interactions	K1, K3
	Discuss the relativistic quantum mechanical equations namely, Klein-Gordon and Dirac equations and the phenomena accounted by them like electron spin and magnetic moment	K1, K4
CO2	Give a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts	K2
CO1	Familiarize the concept of scattering theory such as partial wave analysis and Born approximation	K1

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

CONDENSED MATTER PHYSICS	II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CONDENSED MATTER PHYSICS	Core				4	6	75

Pre-Requisites

Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.

Learning Objectives

6. To describe various crystal structures, symmetry and to differentiate different types of bonding.

- 7. To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- 8. To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- 9. Outline different types of magnetic materials and explain the underlying phenomena.
- 10. Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNITS	Course Details			
	Types of lattices - Miller indices - Symmetry elements and allowed rotations -			
	Simple crystal structures – Atomic Packing Factor- Crystal diffraction - Bragg's			
UNIT I:	law - Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure			
CRYSTAL PHYSICS	and properties of liquid crystals. Diffraction Conditions - Laue equations -			
CRISIAL PHISICS	Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals -			
	Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding			
	(general ideas).			
UNIT II:	Lattice with two atoms per primitive cell - First Brillouin zone - Group and			
LATTICE	phase velocities - Quantization of lattice vibrations - Phonon momentum -			
DYNAMICS	Inelastic scattering by phonons - Debye's theory of lattice heat capacity -			
DINAMICS	Thermal Conductivity - Umkalapp processes.			
	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-			
UNIT III:	Franz law - Band theory of metals and semiconductors - Bloch theorem -			
THEORY OF	Kronig-Penney model - Semiconductors - Intrinsic carrier concentration -			
METALS AND	Temperature Dependence - Mobility - Impurity conductivity - Impurity states -			
SEMICONDUCTORS Hall effect - Fermi surfaces and construction - Experimental methods				
	surface studies - de Hass-van Alphen effect.			

UNIT IV: MAGNETISM	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.
UNIT V: Superconductivity	 Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect Critical field – Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 C. Kittel, 1996, Introduction to SolidState Physics, 7th Edition, Wiley, New York. Rita John, Solid State Physics, Tata Mc-GrawHill Publication. A. J. Dekker, Solid State Physics, Macmillan India, New Delhi. M. Ali Omar, 1974, Elementary Solid-State Physics – Principles and Applications, Addison - Wesley H. P. Myers, 1998, Introductory Solid-State Physics, 2nd Edition, Viva Book, New Delhi.
REFERENCE BOOKS	 J. S. Blakemore, 1974, Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia H. M. Rosenburg, 1993, The SolidState, 3rd Edition, OxfordUniversity Press, Oxford. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi.
WEB SOURCES	1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html 2. http://www.ormp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html 3. https://www.britannica.com/science/crystal 4. https://www.britannica.com/science/crystal 5. https://www.brainkart.com/article/Super-Conductors_6824/

At the end of the course, the student will be able to:

	Student will be able to list out the crystal systems, symmetries allowed in a system and also the diffraction techniques to find the crystal structure					
	Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension to band theory of solids.	K1, K2				
CO3	CO3 Student will be able to comprehend the heat conduction in solids					
CO4	Student will be able to generalize the electronic nature of solids from band theories.	K3, K4				
	Student can compare and contrast the various types of magnetism and conceptualize the idea of superconductivity.	К5				

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

NUMERICAL METHODS AND COMPUTER PROGRAMMING

II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NUMERICAL METHODS AND COMPUTER PROGRAMMING	CORE				4	6	75

Pre-Requisites	
Prior knowledge on com	puter and basic mathematics
Learning Objectives	
1.	To make students to understand different numerical approaches to solve a problem.
2.	To understand the basics of programming

UNITS	Course Details
UNIT I: SOLUTIONS OF EQUATIONS	Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials –Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods – Convergence of solutions in Bisection and Newton-Raphson methods – Limitations of Bisection and Newton-Raphson methods.
UNIT II: LINEAR SYSTEM OF EQUATIONS	Simultaneous linear equations and their matrix representation– Inverse of a Matrix – Solution of simultaneous equations by Matrix inversion method and its limitations – Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method - Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.

UNIT III: INTERPOLATION AND CURVE FITTING	Interpolation with equally spaced points - Newton forward and backward interpolation - Interpolation with unevenly spaced points - Lagrange interpolation – Curve fitting – Method of least squares – Fitting a polynomial.
UNIT IV: DIFFERENTIATION, INTEGRATION AND SOLUTION OF DIFFERENTIAL EQUATIONS	Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's rule – Error estimates – Gauss-Legendre, Gauss- Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature – solution of ordinary differential equations – Euler and RungaKutta methods.
UNIT V: PROGRAMMING WITH C	Flow-charts – Integer and floating point arithmetic expressions – Built-in functions – Executable and non-executable statements – Subroutines and functions – Programs for the following computational methods: (a) Zeros of polynomials by the bisection method, (b) Zeros of polynomials/non-linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules, (e) Solution of first order differential equations by Euler's method.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 V. Rajaraman, 1993, Computer oriented Numerical Methods, 3rd Edition. PHI, New Delhi M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical Methods for Scientific and Engineering Computation, 3rd Edition, New Age Intl., New Delhi S. S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi F. Scheid, 1998, Numerical Analysis, 2nd Edition, Schaum's series, McGraw Hill, New York W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992, Numerical Recipes in FORTRAN, 2nd Edition, Cambridge Univ. Press

REFERENCE BOOKS	 S. D. Conte and C. de Boor, 1981, Elementary Numerical analysis-an algorithmic approach, 3rd Edition, McGraw Hill,) B. F. Gerald, and P. O. Wheatley, 1994, Applied Numerical analysis, 5th Edition, Addison-Wesley, MA. B. Carnagan, H. A. Luther and J. O. Wilkes, 1969, Applied Numerical Methods, Wiley, New York. S. S. Kuo, 1996, Numerical Methods and Computers, Addison-Wesley. V. Rajaraman, Programming in FORTRAN / Programming in C, PHI, New Delhi
WEB SOURCES	 <u>https://www.scribd.com/doc/202122350/Computer-Oriented-Numerical-Methods-by-V-RajaRaman</u> <u>https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/referencespapers.aspx?referenceid=1682874</u> <u>https://nptel.ac.in/course/122106033/</u> <u>https://nptel.ac.in/course/103106074/</u> <u>https://onlinecourses.nptel.ac.in/noc20_ma33/preview</u>

At the end of the course, the student will be able to:

CO1	Recall the transcendental equations and analyze the different root finding methods. Understand the basic concept involved in root finding procedure such as Newton Raphson and Bisection methods, their limitations.	K1, K2
CO2	Relate Simultaneous linear equations and their matrix representation Distinguish between various methods in solving simultaneous linear equations.	К5
CO3	Understand, how interpolation will be used in various realms of physics and Apply to some simple problems Analyze the newton forward and backward interpolation	K2, K3
CO4	Recollect and apply methods in numerical differentiation and integration. Assess the trapezoidal and Simson's method of numerical integration.	K3, K4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

CO5 Understand the basics of C-programming and conditional statements.

K2

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

MAPPING WITH PROGRAM OUTCOMES:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

NUMERICAL METHODS AND	COMPUTER	II YEAR - THIRD SEMESTER
PROGRAMMING (FORTRAN/C)		II I LAK - I HIND SEWIESI EK

|--|

· · · · · · · · · · · · · · · · · · ·			1	1	I	
	Practical – III	Core				
	NUMERICAL METHODS AND			3	4	75
	COMPUTER PROGRAMMING	Practical-		5	4	15
	(FORTRAN/C)	III				
	· · · · ·					
	Pre-Requisite					
Ũ	e in differential equation and linear algeb					
Basic knowledge	of operating system and computer fundation					
	Learning Object				.1 0	
	objective of the course on Computation					
	the numerical methods used in comput h as C/FORTRAN	ation and pro	grammi	ng using a	ny nigi	1 level
00	computational skill using various mather	nation toola				
	software tools to explore the concepts of		nce			
	the real time activities using physics and			ations		
	Course Det		TOTINUI	ations.		
	(Minimum of Twelve		ts from	the list)		
1. Lagrang	e interpolation with Algorithm, Flow cha			ше пэ <i>т</i>		
0 0	forward interpolation with Algorithm, Fl	-				
	backward interpolation with Algorithm, I					
	tting: Least squares fitting with Algorithm					
5. Numeric	al integration by the trapezoidal rule with	n Algorithm, l	Flow cha	art and out	put.	
	al integration by Simpson's rule with Alg					
	al solution of ordinary first-order differe	ntial equation	s by the	Euler met	hod wi	th
-	ow chart and output.			D 17		
	al solution of ordinary first-order differe	ntial equation	s by the	Runge- K	utta me	thod
-	n, Flow chart and output. Roots of a Polynomial - Bisection Metho	d				
-	Roots of a Polynomial - Newton Raphson					
U	of Simultaneous Linear Equation by Gau		n metho	d.		
	of Ordinary Differential Equation by Eu					
	Lutta Fourth Order Method for solving fir		nary Dif	ferential E	quatior	IS
14. Newton	s cotes formula		-		-	
15. Trapezo	dal rule					
-	i's 1/3 rule					
-	1's 3/8 rule					
18. Boole's						
	n quadrature method (2 point and 3 point					
20. Giraffe's	s root square method for solving algebrai	•	Ma (1-	0 TZ ·	- T ² - 1	Der d'
	1. Numerical methods using M	atlad – John	wathew	's & Kurti	s Fink,	Prenti
	Hall, New Jersey 2006	noo and Eng	inaarin	. МИ	Vonko	torom
TEXT BOOK	2. Numerical methods in Scie National Publishing Co. Mad	-	gineering	3 - IVI.K.	venka	tarama
	3. V. Rajaraman, 1993, Com		ed Num	nerical Ma	othode	3rd F
	(Prentice-Hall, New Delhi.					5 1
	(Fiendle-Hall, New Delm.					

	 M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical Methods for Scientific and Engineering Computation, 3rd Ed. New Age International, New Delhi. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New Delhi.
REFERENCE BOOKS	 S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill). B.F. Gerald and P.O. Wheately, 1994, Applied Numerical Analysis, 5th Edition, Addison Wesley, Reading, MA. B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied Numerical Methods (Wiley, New York. S.S. Kuo, 1996, Numerical Methods and Computers, Addison - Wesley, London. V. Rajaraman, Programming in FORTRAN/ Programming in C, PHI, New Delhi.

At the end of the course the student will be able to:

CO1Program with the C Program/ FORTRAN with the C or any other high level languageK1CO2Use various numerical methods in describing/solving physics problems.K4CO3Solve problem, critical thinking and analytical reasoning as applied to scientific problems.K5CO4To enhance the problem-solving aptitudes of students using various numerical methods.K5CO5To apply various mathematical entities, facilitate to visualise any complicate tasks.K3CO6Process, analyze and plot data from various physical phenomena and interpret their meaningK4CO7Identify modern programming methods and describe the extent and limitations of computational methods in physicsK5CO8Work out numerical differentiation and integration whenever routine are not applicable.K5CO9Apply various interpolation methods and finite difference concepts.K4C010different methods under different conditions, and numerical solution of system of algebraic equation.K1, K4			
CO3Solve problem, critical thinking and analytical reasoning as applied to scientific problems.K5CO4To enhance the problem-solving aptitudes of students using various numerical methods.K5CO5To apply various mathematical entities, facilitate to visualise any complicate tasks.K3CO6Process, analyze and plot data from various physical phenomena and interpret their meaningK4CO7Identify modern programming methods and describe the extent and limitations of computational methods in physicsK5CO8Work out numerical differentiation and integration whenever routine are not applicable.K4CO9Apply various interpolation methods to find out solution of algebraic equation using algebraic equation.K1,	CO1	Program with the C Program/ FORTRAN with the C or any other high level language	K1
CO3problems.K5CO4To enhance the problem-solving aptitudes of students using various numerical methods.K5CO5To apply various mathematical entities, facilitate to visualise any complicate tasks.K3CO6Process, analyze and plot data from various physical phenomena and interpret their meaningK4CO7Identify modern programming methods and describe the extent and limitations of computational methods in physicsK1CO8Work out numerical differentiation and integration whenever routine are not applicable.K5CO9Apply various interpolation methods and finite difference concepts.K4CO10different methods under different conditions, and numerical solution of system of algebraic equation.K1, K4	CO2	Use various numerical methods in describing/solving physics problems.	K4
CO5To apply various mathematical entities, facilitate to visualise any complicate tasks.K3CO6Process, analyze and plot data from various physical phenomena and interpret their meaningK4CO7Identify modern programming methods and describe the extent and limitations of computational methods in physicsK1CO8Work out numerical differentiation and integration whenever routine are not applicable.K5CO9Apply various interpolation methods and finite difference concepts.K4CO10Understand and apply numerical methods to find out solution of algebraic equation using algebraic equation.K1, K4			
COORProcess, analyze and plot data from various physical phenomena and interpret their meaningK4CO6Process, analyze and plot data from various physical phenomena and interpret their meaningK4CO7Identify modern programming methods and describe the extent and limitations of computational methods in physicsK1CO8Work out numerical differentiation and integration whenever routine are not applicable. K5K5CO9Apply various interpolation methods and finite difference concepts.K4CO10different methods under different conditions, and numerical solution of system of algebraic equation.K1, K4	CO4	To enhance the problem-solving aptitudes of students using various numerical methods.	К5
CO0meaningK4CO7Identify modern programming methods and describe the extent and limitations of computational methods in physicsK1CO8Work out numerical differentiation and integration whenever routine are not applicable. K5K5CO9Apply various interpolation methods and finite difference concepts.K4CO10Understand and apply numerical methods to find out solution of algebraic equation using different methods under different conditions, and numerical solution of system of K4K1, K4	CO5	To apply various mathematical entities, facilitate to visualise any complicate tasks.	K3
CO7computational methods in physicsK1CO8Work out numerical differentiation and integration whenever routine are not applicable.K5CO9Apply various interpolation methods and finite difference concepts.K4CO10Understand and apply numerical methods to find out solution of algebraic equation using algebraic equation.K1, K4	L L D D		K4
CO9Apply various interpolation methods and finite difference concepts.K4C010Understand and apply numerical methods to find out solution of algebraic equation using different methods under different conditions, and numerical solution of system of algebraic equation.K1, K4	CO7		
CO10Understand and apply numerical methods to find out solution of algebraic equation using different methods under different conditions, and numerical solution of system of algebraic equation.K1, K4	CO8	Work out numerical differentiation and integration whenever routine are not applicable.	K5
CO10 different methods under different conditions, and numerical solution of system of K1, K4	CO9	Apply various interpolation methods and finite difference concepts.	K4
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	CO10	different methods under different conditions, and numerical solution of system of	
	K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Elective -V- ENI	ERGY PHYSICS
-------------------------	--------------

II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ENERGY PHYSICS	DISCIPLIN E CENTRIC ELECTIVE				3	4	75

	Pre-Requisites
Knowledge of conve	entional energy resources
	Learning Objectives
1.	To learn about various renewable energy sources.
2.	To know the ways of effectively utilizing the oceanic energy.
3.	To study the method of harnessing wind energy and its advantages.
4.	To learn the techniques useful for the conversion of biomass into useful energy.5. To know about utilization of solar energy.

UNITS	Course Details
UNIT I: INTRODUCTION TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability-prospects of Renewable energy sources- Energy from other sources-chemical energy-Nuclear energy- Energy storage and distribution.
UNIT II: ENERGY FROM THE OCEANS	Energy utilization–Energy from tides–Basic principle of tidal power–utilization of tidal energy – Principle of ocean thermal energy conversion systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion–power in the wind–forces in the Blades– Wind energy conversion–Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage–Applications of wind energy.

UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies– wet and dry process– Photosynthesis -Biogas Generation: Introduction–basic process: Aerobic and anaerobic digestion – Advantages of anaerobic digestion–factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas-utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements-solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristics- Efficiency-solar water Heater -solar distillation- solar cooking-solar greenhouse - Solar pond and its applications.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna publishers, New Delhi. S. Rao and Dr. ParuLekar, Energy technology. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983). Solar energy, principles of thermal collection and storage by S.P.Sukhatme, 2ndedition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997). Energy Technology by S.Rao and Dr.Parulekar.
REFERENCE BOOKS	 Renewable energy resources, John Twidell and Tonyweir, Taylor and Francis group, London and New York. Applied solar energy, A.B.MeinelandA.P.Meinal John Twidell and Tony Weir, Renewable energy resources, Taylor and Francis group, London and New York. Renewal Energy Technologies: A Practical Guide for Beginners C.S. Solanki- PHI Learning Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech Publications
WEB SOURCES	 https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1 https://www.nationalgeographic.org/encyclopedia/tidal-energy/ https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy https://www.reenergyholdings.com/renewable-energy/what-is-biomass/ https://www.acciona.com/renewable-energy/solar-energy/

At the end of the course, the student will be able to:

CO1 To identify various forms of renewable and non-renewable energy sources

	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	К2
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	К3
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,K4
	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	K2,K5
K1 - R	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	<u> </u>

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

SEWAGE AND WASTE WATER	II YEAR – THIRD SEMESTER
TREATMENT AND REUSE	

Subject Code	Subject Name	Category		Т	Р	Credits	Inst. Hours	Marks
	SEWAGE AND WASTE WATER TREATMENT AND REUSE	Skill Enhancement Course -III				2	4	75

Pre-Requisites

Basic knowledge of classification of sewage and solid waste and its harmful effects.

Learning Objectives

- > To gain basic knowledge in sewage and waste water Treatment procedures
- > To gain industry exposure and be equipped to take up job.
- > To harness entrepreneurial skills.
- > To analyze the status of sewage and waste water management in the nearby areas.
- > To sensitize the importance of healthy practices in waste water management.

UNITS	Course Details					
UNIT I: RECOVERY & REUSE OF WATER	Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication					
UNIT II: DISINFECTION	Disinfection: Introduction to disinfection and sterilization: Disinfectant - UV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile - Bacteriostatic and Bactericidal - factors affecting disinfection.					
UNIT III: CHEMICAL DISINFECTION	Chemical Disinfection: Introduction - Theory of Chemical Disinfection - Chlorination Other Chemical Methods - Chemical Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment - Disinfection By-Products(DBPs)					
UNIT IV: PHYSICAL DISINFECTION	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment - Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating.					
UNIT V: INDUSTRIAL VISIT	Industrial visit – data collection and analysis - presentation					
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					

Γ	T
	1. Drinking water and disinfection technique, Anirudhha Balachandra. CRC press (2013)
	2. Design of Water and Wastewater Treatment Systems (CV-424/434), ShashiBushan,Jain Bros)2015(
	3. Integrated Water Resources Management, Sarbhukan M M, CBS PUBLICATION (2013)
TEXT BOOKS	4. C.S. Rao, Environmental Pollution Control Engineering, New Age International, 2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata
	McGraw Hill Publishing Company Ltd., 2012.
	1. Handbook of Water and Wastewater Treatment Plant Operations, Frank. R Spellman, CRC Press, 2020
REFERENCE BOOKS	2. Wastewater Treatment Technologies, MritunjayChaubey, Wiley, 2021.
	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill Higher Edu., 2002.
	 W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd Edn., McGraw Hill Inc., 1989
	 Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing, 2010.
	1. https://www.google.co.in/books/edition/Drinking_Water_DisinfectionTech
	niques/HVbNBQAAQBAJ?hl=en
	2.https://www.meripustak.com/Integrated-Solid-Waste-Management-
	Engineering-Principles-And-Management-Issues-125648?
	<u>3.https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-</u>
	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30K
	ofoaAmFsEALw_wcB
WEB SOURCES	 <u>https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ</u>
	jxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB
	5. <u>https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-</u>
	424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob-
	21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=
	g&hvrand=4351305881865063672&hvpone=&hvptwo=&hvqmt=
	&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid=pla-
	<u>890646066127&psc=1&ext_vrnc=hi</u>

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K 1
CO2	Equipped to take up related job by gaining industry exposure	К5
CO3	Develop entrepreneurial skills	K3
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4

CO5 Adequately sensitized in managing solid wastes in and around his/her locality

PO1 PO2 PO3 PO4 PO5 PO7 PO8 PO6 PO9 PO10 CO1 CO2 **CO3 CO4** CO5

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
C01	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

FOURTH SEMESTER

NUCLEAR AND PARTICLE PHYSICS	II YEAR – FOURTH SEMESTER	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NUCLEAR AND PARTICLE PHYSICS	Core				4	6	75

K5

Pre-Requisites Knowledge of basic structure of atom and nucleus. Learning Objectives

- Introduces students to the different models of the nucleus in a chronological order
- Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types of nuclear reactions and their principles
- Provides students with details of nuclear decay with relevant theories
- Exposes students to the Standard Model of Elementary Particles and Higgs boson

UNITS	Course Details
UNIT I: NUCLEAR MODELS	Liquid drop model – Weizacker mass formula – Isobaric mass parabola –Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson collective model – rotational and vibrational bands.
UNIT II: NUCLEAR FORCES	Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.
UNIT III: NUCLEAR REACTION S	Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.
UNIT IV: NUCLEAR DECAY	Beta decay – Continuous Beta spectrum – Fermi theory of beta decay - Comparative Half-life –Fermi Kurie Plot – mass of neutrino – allowed and forbidden decay — neutrino physics – Helicity - Parity violation - Gamma decay – multipole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.
UNIT V: ELEMENTA RY PARTICLES	Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU(2) and SU(3) groups-Gell Mann matrices– Gell Mann Okuba Mass formula-Quark Model. Standard model of particle physics – Higgs boson.
UNIT VI: PROFESSIO NAL	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

COMPONE	
NTS	
TEXT BOOKS REFERENC E BOOKS	 D. C. Tayal – Nuclear Physics – Himalaya Publishing House (2011) K. S. Krane – Introductory Nuclear Physics – John Wiley & Sons (2008) R. Roy and P. Nigam – Nuclear Physics – New Age Publishers (1996) S. B. Patel – Nuclear Physics – An introduction – New Age International Pvt Ltd Publishers (2011) Glasstone – Source Book of Atomic Energy – Van Nostrand Reinhold Inc.,U.S 3rd Revised edition (1968) L. J. Tassie – The Physics of elementary particles – Prentice Hall Press (1973) H. A. Enge – Introduction to Nuclear Physics – Addison Wesley, Publishing Company. Inc. Reading. New York, (1974). Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002) Bernard L Cohen – Concepts of Nuclear Physics – McGraw Hill Education (India) Private Limited; 1 edition (2001) B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
WEB SOURCES	 <u>http://bubl.ac.uk/link/n/nuclearphysics.html</u> <u>http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp://www.scholar_pedia.org/article/Nuclear_Forces</u> <u>https://www.nuclear-power.net/nuclear-power/nuclear-reactions/</u> <u>http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.html</u> <u>https://www.ndeed.org/EducationResources/HighSchool/Radiography/radioactivedeca_y.html</u>

At the end of the course, the student will be able to:

Gain knowledge about the concepts of helicity, parity, angular correlation and internal conversion.	K1, K5
Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter.	K2, K3
Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula	К3
Analyze data from nuclear scattering experiments to identify different properties of the nuclear force.	K3, K4
Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles.	K5

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

SPECT	SPECTROSCOPY				II YEAR - FOURTH SEMESTER							
Subjec Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks				

Core

4

6

75

Pre-Requisites								
Thorough und	erstanding of	of e	electromagnetic	spectrum,	mathematical	abilities,	knowledge	of
molecules, their	molecules, their structure, bond nature, physical and chemical behaviour							

SPECTROSCOPY

Learning Objectives						
1.	To comprehend the theory behind different spectroscopic methods					
2.	To know the working principles along with an overview of construction of					
	different types of spectrometers involved					
3.	To explore various applications of these techniques in R &D.					
4.	Apply spectroscopic techniques for the qualitative and quantitative					
	analysis of various chemical compounds.					
5.	Understand this important analytical tool					

UNITS	Course Details
	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-
UNIT I:	reduced mass - rotational constant Effect of isotopic substitution - Non rigid
	rotator - centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic
MICROWAVE	molecules - linear - symmetric asymmetric top molecules - Hyperfine structure
SPECTROSCOPY	and quadrupole moment of linear molecules - Instrumentation techniques - block
	diagram -Information Derived from Rotational Spectra- Stark effect- Problems.
	Vibrations of simple harmonic oscillator - zero-point energy- Anharmonic
	oscillator - fundamentals, overtones and combinations- Diatomic Vibrating
UNIT II:	Rotator- PR branch – PQR branch- Fundamental modes of vibration of H_2O and
	CO2 -Introduction to application of vibrational spectra- IR Spectrophotometer
INFRA-RED	Instrumentation (Double Beam Spectrometer) - Fourier Transform Infrared
SPECTROSCOPY	Spectroscopy - Interpretation of vibrational spectra- remote analysis of
	atmospheric gases like N2O using FTIR by National Remote Sensing Centre
	(NRSC), India- other simple applications
	Theory of Raman Scattering - Classical theory - molecular polarizability -
UNIT III:	polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman
	spectra of linear molecule - symmetric top molecule - Stokes and anti-stokes line-
RAMAN	SR branch -Raman activity of H2O and CO2 -Mutual exclusion principle-
SPECTROSCOPY	determination of N ₂ O structure -Instrumentation technique and block diagram -
	structure determination of planar and non-planar molecules using IR and Raman
	techniques - FT Raman spectroscopy- SERS
	Nuclear and Electron spin-Interaction with magnetic field - Population of Energy
	levels - Larmor precession- Relaxation times - Double resonance- Chemical shift
UNIT IV:	and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction
	- interpretation of simple organic molecules - Instrumentation techniques of NMR
RESONANCE	spectroscopy – NMR in Chemical industries- MRI Scan
SPECTROSCOPY	Electron Spin Resonance: Basic principle – Total Hamiltonian (Direct Dipole-
	Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure
	(Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation -
	Medical applications of ESR

UNIT V: UV SPECTROSCOPY UNIT VI: PROFESSIONAL COMPONENTS	Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert Beer law - molar absorptivity – transmittance and absorbance - Color in organic compounds- Absorption by organic Molecule -Chromophores -Effect of conjugation on chromophores - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer - Simple applications Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 C N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi. D.N. Satyanarayana, 2001, <i>Vibrational Spectroscopy and Applications</i>, New Age International Publication. B.K. Sharma, 2015, <i>Spectroscopy</i>, Goel Publishing House Meerut. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition), New Age International Publishers.
REFERENCE BOOKS	 J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New York. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, SpringerLink.
WEB SOURCES	1. https://www.youtube.com/watch?v=0iQhirTf2PI 2. https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5 3. https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee 4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview 5.

At the end of the course the student will be able to:

CO1	Understand fundamentals of rotational spectroscopy, view molecules as elastic	
	rotors and interpret their behaviour. Able to quantify their nature and correlate	K2
	them with their characteristic properties.	
CO2	Understand the working principles of spectroscopic instruments and theoretical	
	background of IR spectroscopy. Able to correlate mathematical process of	K2, K3
	Fourier transformations with instrumentation. Able to interpret vibrational	

	spectrum of small molecules.	
	Interpret structures and composition of molecules and use their knowledge of	К5
	Raman Spectroscopy as an important analytical tool	
CO4	Use these resonance spectroscopic techniques for quantitative and qualitative	K4
	estimation of a substances	124
CO5	Learn the electronic transitions caused by absorption of radiation in the UV/Vis	K1,
	region of the electromagnetic spectrum and be able to analyze a simple UV	K1, K5
	spectrum.	IX3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	1

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

PRACTIC	AL IV	II YE	II YEAR - FOURTH SEMESTER						
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks	

PRACTICAL IV	Core Practical -IV		3	4	75

Pre-Requisites

Knowledge and handling of general and experiments of Physics, as well as fundamentals of digital principles,

Learning Objectives

To understand the theory and working of Microprocessor, Microcontroller and their applications

To use microprocessor and Microcontroller in different applications

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 2. Determination of Solar constant
- 3. Determination of velocity and compressibility of a liquid using Ultrasonics Interferometer
- 4. Arc spectrum Iron.
- 5. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. GM counter Feather's analysis: Range of Beta rays
- 8. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 9. Determination of Refractive index of liquids using diode Laser/He Ne Laser
- 10. Molecular spectra CN bands
- 11. Determination of Planck Constant LED Method
- 12. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 13. Construction of square wave generator using IC 555 Study of VCO
- 14. Study of Binary to Gray and Gray to Binary code conversion.
- 15. Construction of Encoder and Decoder circuits using ICs.
- 16. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 17. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 18. Study of Modulus Counter
- 19. Construction of Multiplexer and Demultiplexer using ICs.
- 20. 8-bit addition and subtraction, multiplication and division using microprocessor 8085
- 21. Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending orderusing microprocessor 8085
- 22. Code conversion (8-bit number): a) Binary to BCD b) BCD to binaryusing microprocessor 8085
- 23. Addition of multi byte numbers, Factorialusing microprocessor 8085
- 24. Clock program- 12/24 hours-Real time application Six Digits Hexa Decimal and Decimal Counters using microprocessor 8085

- 25. Interfacing of LED Binary up/down counter, BCD up/down counter and N/2N up/down counter using microprocessor 8085
- 26. Interfacing of seven segment display using microprocessor 8085
- 27. Interfacing of 8-bit R / 2R ladder DAC (IC 741) Wave form generation Square, Rectangular, Triangular, Saw tooth and Sine waves using microprocessor 8085
- 28. Interfacing of DC stepper motor Clockwise, Anti-clockwise, Angular movement and Wiper action using microprocessor 8085
- 29. Interfacing of Temperature Controller and Measurementusing microprocessor 8085

30. Interfacing of Traffic light controller using microprocessor 8085

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan
	2. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
	3. Electronic lab manual Vol I, K ANavas, Rajath Publishing
TEXT BOOKS	4. Douglas V. Hall, Microprocessors and Interfacing programming and
	Hardware, Tata Mc Graw Hill Publications (2008)
	5. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085",
	3rd Edition S.Visvanathan Pvt, Ltd.
	1. Advanced Practical Physics, S.P Singh, Pragati Prakasan
	2. A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley &
	Sons (Asia) Pvt. ltd
REFERENCE	3. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
BOOKS	Publishing
	4. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B. Sasikala, Wheeler Publishing, New Delhi
	5. Microprocessor and Its Application - S. Malarvizhi, Anuradha
	Agencies Publications

COURSE OUTCOMES:

At the end of the course, the student will be able to:

C01	Develop the programming skills of Microprocessor	K5
CO2	Appreciate the applications of Microprocessor programming	К3
CO3	Understand the structure and working of 8085 microprocessor and apply it.	K1, K3
CO4	Acquire knowledge about the interfacing peripherals with 8085 microprocessor.	K1, K4
	Acquire knowledge about the interfacing 8051 microcontroller with various peripherals.	K1,K4

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	
CO1	2	2	2	3	3	2	2	1	3	2	
CO2	2	1	3	3	3	2	2	1	3	2	
CO3	3	3	1	3	3	2	2	1	3	2	
CO4	3	3	3	3	3	2	2	1	3	2	
CO5	3	3	3	3	3	2	2	1	3	2	
Industry ELECTIVE- VI- MICROPROCESSOR 8085 AND MICROCONTROLLER 8051						II YEAR – FOURTH SEMESTER					

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MICROPROCESSOR 8085 AND	INDUSTRY				3	1	75
	MICROCONTROLLER 8051	-ELECTIVE				5	4	75

Pre-Requisites				
Knowledge of number systems and binary operations				
Learning Objectives				

- To provide an understanding of the architecture and functioning of microprocessor 8085A and to the methods of interfacing I/O devices and memory to microprocessor
- To introduce 8085A programming and applications and the architecture and instruction sets of microcontroller 8051

UNITS	Course Details
UNIT I:8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING	Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme- I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller – Programmable communication interface - Programmable counter /interval timer.
UNIT II: 8085 INTERFACING APPLICATIONS	Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities –Voltage and current) Measurement of physical quantities (Temperature an strain).
UNIT III: 8051 MICROCONTROLLERHARD WARE	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.
UNIT IV: 8051 INSTRUCTIONS SET AND ASSEMBLY LANGUAGE PROGRAMMING	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines – Programming.
UNIT V: INTERRUPT PROGRAMMING AND INTERFACING TO EXTERNAL WORLD	8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt – Timer interrupts and programming – Programming external hardware interrupts – Serial communication interrupts and programming – Interrupt priority in the 8051 : Nested interrupts, Software triggering of interrupt. LED Interface Seven segment display interface- Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities – Voltage and current) Measurement of physical quantities (Temperature an strain).
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS	 A. Nagoor Kani, Microprocessors & Microcontrollers, RBA Publications (2009). A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009). Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013). B. Ram, Fundamentals of Microprocessors & Microcontrollers, Dhanpat Rai publications New Delhi (2016). V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd Edition S.Visvanathan Pvt, Ltd.
REFERENCE BOOKS	 Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc Graw Hill Publications (2008) Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education (2008). Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi.
WEB SOURCES	 <u>https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architecture.html</u> <u>http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/</u> <u>https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/</u> <u>http://www.circuitstoday.com/8051-microcontroller</u>
	5. https://www.elprocus.com/8051-assembly-language-programming/

At the end of the course, the student will be able to:

CO1 Gain knowledge of architecture and working of 8085 microprocessor.	K1
CO2 Get knowledge of architecture and working of 8051 Microcontroller.	K1
CO3 Be able to write simple assembly language programs for 8085 microprocessor.	K2, K3
CO4 Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4
CO5 Understand the different applications of microprocessor and microcontroller.	K3,K 5

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

SOLAR ENERGY UTILIZATION	II YEAR – FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SOLAR ENERGY UTILIZATION	Skill Enhancemen t course – 4				2	3	75

Pre-Requisites	
Basic knowledge of heat energy, way of transfer of heat, solar energy, materials types	

Learning Objectives	
To impart fundamental aspects of solar energy utilization.	
To give adequate exposure to solar energy related industries	
To harness entrepreneurship skills	
> To understand the different types of solar cells and channelizing them to the different	ıt
sectors of society	

To develop an industrialist mindset by utilizing renewable source of energy

UNITS	Course Details
	Course Details
UNIT I: HEAT TRANSFER & RADIATION ANALYSIS	Conduction, Convection and Radiation – Solar Radiation at the earth's surface - Determination of solar time – Solar energy measuring instruments.
UNIT II: SOLAR COLLECTORS	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.
UNIT III: SOLAR HEATERS	Types of solar water heater - Solar heating system – Collectors and storage tanks – Solar ponds – Solar cooling systems.
UNIT IV: SOLAR ENERGY CONVERSION	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process- texturization, diffusion, Antireflective coatings, metallization.
UNIT V: NANOMATERIALS IN FUEL CELL APPLICATIONS	Use of nanostructures and nanomaterials in fuel cell technology - high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano technology in hydrogen production and storage. Industrial visit – data collection and analysis - presentation
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 Solar energy utilization -G.D. Rai –Khanna publishers – Delhi 1987. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applications", Mc Graw- Hill, 2010. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems", Academic Press, London, 2009 Tiwari G.N, "Solar Energy – Fundamentals Design, Modelling and applications, Narosa Publishing House, New Delhi, 2002 Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
REFERENCE BOOKS	 Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976) Solar energy thermal processes – John A.Drife and William. (1974)

	3. John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources, 2005									
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes,									
	4th Edition, john Wiley and Sons, 2013									
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley and									
	Sons,2007.									
WEB SOURCES	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556f9a4fb									
	2. https://books.google.vg/books?id=lXHcwZo9XwC&sitesec=buy&source=gbs_vpt_read									
	3. www.nptel.ac.in/courses/112105051									
	4. <u>www.freevideolectures.com</u>									
	5. <u>http://www.e-booksdirectory.com</u>									

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of solar energy utilization	K1
CO2	Equipped to take up related job by gaining industry exposure	К3
CO3	Develop entrepreneurial skills	К5
CO4	Skilled to approach the needy society with different types of solar cells	K4
CO5	Gained industrialist mindset by utilizing renewable source of energy	K2, K3

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	2	2	3	2

CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3