SRI SANKARA ARTS AND SCIENCE COLLEGE (AUTONOMOUS) AFFILIATED TO UNIVERSITY OF MADRAS ENATHUR, KANCHIPURAM – 631561

B.Sc. PHYSICS

REGULATION AND SYLLABUS

(Effective from the academic year 2023-2024)

Choice Based Credit System

UNDERGRADUATE COURSE IN B.Sc., PHYSICS SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the undergraduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offers courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provides a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc

REGULATIONS	S ON	LEARNING	OUTCOMES-BASED	CURRICULUM
FRAMEWORK	FOR UNI	DERGRADUAT	E EDUCATION	
Programme	B.Sc., Ph	ysics		
Programme				
Code				

Duration	3 years [UG]
Programme	PO1: Disciplinary knowledge:
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study
	 PO2: Communication Skills: Ability to express thoughts and ideas effectively in writing and orally communicate with others using appropriate media; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully; read and write analytically and present complex information in a clear and concise manner to different groups. PO3: Critical thinking: Capability to apply the analytic thought to a body of knowledge; analyse and evaluate the proofs, arguments, claims, beliefs on the basis of empirical evidences; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and
	 theories by following scientific approach. PO4: Problem solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations.
	 PO5: Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints. PO6: Research-related skills: A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation
	PO7: Cooperation/Team work: Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team
	PO8: Scientific reasoning : Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.
	PO9: Reflective thinking:

	Critical sensibility to lived experiences, with self-awareness and
	reflexivity of both self and society.
	PO10 Information/digital literacy: Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.
	PO 11 Self-directed learning : Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.
	PO 12 Multicultural competence: Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.
	PO 13: Moral and ethical awareness/reasoning : Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.
	PO 14: Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.
	PO 15: Lifelong learning: Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.
Programme Specific Outcomes:	PSO1: Placement: To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, and beliefs and apply diverse frames of reference to decisions and actions.
	PSO 2 : Entrepreneur: To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate start-ups and high potential organizations

PSO3: Research and Development: Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
PSO4 : Contribution to Business World: To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
PSO 5: Contribution to the Society: To contribute to the development of the society by collaborating with stakeholders for mutual benefit

B. Sc., PHYSICS DEGREE PROGRAMM

REGULATIONS

1. DURATION OF THE PROGRAME

1.1 Three years (six semesters)

1.2 Each academic year shall be divided into two semesters. The odd semesters shall consist of the period from June to November of each year and the even semesters from December to April of each year.

1.2 There shall be not less than 90 working 'days for each semester.

2.ELIGIBILITY FOR ADMISSION

2.1 The details of Eligibility for Admission

A Pass in the Higher secondary Examination conducted by the Government of Tamil Nadu or an Examination accepted as equivalent thereof by the syndicate of the university of madras and the subjects specified below.

Program & Branch – Physics

Major subjects of study - Mathematics and Physics

3.CREDIT REQUIRMENTS AND ELIGIBILITY FOR AWARD OFDEGREE

A Candidate shall be eligible for the award of the Degree only if he/she has undergone the prescribed course of study in a College affiliated to the University for a period of not less than three academic years and passed the examinations of all the Six Semesters prescribed earning a minimum of **140**

credits as per the distribution given in Regulation 4 for Part I, II, III, IV & V and also fulfilled

such other conditions as have been prescribed thereof.

4.COURSE OF STUDY, CREDITS AND SCHEME OF EXAMINATION

4.1 The Course Components and Credit Distribution shall consist of the following:(Minimum Number of Credits to be obtained)

Sem–I	С	Н	Sem-II	С	Н	Sem-III	С	Н	Sem-IV	С	Н	Sem - V	С	H	Sem - VI	С	н
1.1 Part – I Language Tamil/Sanskrit	3	4	Part – I Language Tamil/Sanskrit	3	4	Part – I Language Tamil/Sanskrit	3	4	Part – I Language Tamil/Sa nskrit	3	4	Core Theory 5 Electricity, Magnetism and Electromagnetism	4	5	Core Theory 8 Quantum Mechanics and Relativity	4	5
1.2 Part – II English	3	6	Part – II English	3	6	Part – II English	3	4	Part – II English	3	4	Core Theory 6 – Atomic and Nuclear Physics	4	5	Core Theory 9 – Solid State Physics	4	5
1.3 Part – III Core Theory 1 – Properties of Matter and Acoustics	4	6	Part – III Core Theory 2 Heat, Thermodynam ics and Statistical Physics	4	6	Part – III Core Theory 3 Mechanics	4	6	Part – III Core Theory 4 Optics and Laser Physics	4	6	Core Theory 7 – Analog and Communication Electronics	4	5	Core Theory 10 – Digital Electronics and Microprocesso r 8085	4	5
Core Practical 1 – Physics Practical 1	2	3	Core Practical 2 Physics Practical 2	2	3	Core Practical 3 Physics Practical 3	2	3	Core Practical 4 Physics Practical 4	2	3	Core Practical 5 – Physics Practical 5	2	3	Core Practical 6 –Physics Practical 6	2	3
Generic Specific Elective Theory – Mathematics 1	5	7	Generic Specific Elective Theory – Mathematics 1	5	7	Generic Specific Elective Theory – Chemistry 1	3	5	Generic Specific Elective Theory – Chemistr y 2	3	5	Elective Course 1 (Discipline Specific) – Mathematical Physics	4	5	Elective Course 3 (Discipline Specific) – Medical Instrumentatio n	4	4

TEMPLATE FOR U.G., PROGRAMME

						Generic Specific Elective - Chemistry Practical 1	2	3	Generic Specific Elective - Chemistr y Practical 2	2	3	Elective Course 2 (Discipline Specific) – Nano Science and Nano technology	4	5	Elective Course 4 (Discipline Specific) – Laser and Fiber Optics	4	4
1.4 Part – IV Skill Enhancement Course SEC-1 (NME) – Physics for Everyday Life	2	2	Part – IV Skill Enhancement Course SEC-2 (NME) – Astrophysics	2	2	Part – IV Skill Enhancement Course -SEC-4 (Entrepreneuria l Based) – Home Electrical Installation	2	2	Part – IV Skill Enhancem ent Course - SEC-6 – Medical Physics		2	Internship / Industrial Training (Carried out in II Year Summer Vocation) (30 Hours)	2	-	Project	3	-
Foundation Course – Introductory Physics	2	2	Skill Enhancement Course SEC-3 Energy Physics	2	2	Skill Enhancement Course -SEC- 5 - Materials Science	2	2	Skill Enhancem ent Course - SEC- 7 – Physics of Music	2	2	Value Education	2	2	Professional competency Skill – Problem Solving Skills in Physics	2	2
						EVS		1	EVS	2	1				Extension Activity, NSS/NCC/YR C/Physical Education (Outside College Hours)	1	
Total	21	30		21	30		21	30		23	30		2 6	3 0		28	30
						Total	Credi	t Poin	nts							1	40

Part	Details	No. of Papers	Total Credits	Part Credits
Part-I	Language (3 Credits)	4	12	12
Part-II	English (3 Credits)	4	12	12
	Core Theory (4 Credits)	10	40	
	Discipline Specific Elective Theory (4 Credits)	4	16	
	Generic Specific Elective Theory (3 Credits) – Mathematics	2	D. of pers Total Credits 12 12 12 40 16 16 10 6 12 4 3 2 14 2 2 2 2 2 11 1	
Part-III	Generic Specific Elective Theory (3 Credits) – Chemistry	2	6	91
	Core Practical (2 Credits)	PapersCredit4124121040 (4) 10 (4) 16 (3) 210 (3) 26 (3) 26 (3) 24 (3) 12 (2) 13 (3) 12 (3) 12 (3) 12 (3) 12 (3) 12 (3) 12 (3) 12 (3) 12 (3) 12 (3) 12 (3) 11	12	
	Generic Specific Elective Practical – Chemistry (2 Credits)	2	4	
	Project (3 Credit)	1	3	
	Foundation Course (2 Credits)	1	2	
	Skills Enhancement Course (SEC) NME (2 Credits)	7	14	_
Part-IV	Professional Competency Skill	1	2	
	Summer Internship (2 Credits)	1	2	24
	EVS (2 Credit)	1	2	_
	Value Education (2 Credits)	1	2	
Part-V	Extension Activity (NSS/NCC/YRC/Physical Education) (1 Credit)	1	1	1
		48	140	140

4.2 DETAILS OF COURSE OF STUDY OF PARTS (I – V)

Parts	Sem-I	Sem-II	Sem-III	Sem-IV	Sem-V	Sem-VI	Total Credits
Part-I	3	3	3	3	-	-	12
Part-II	3	3	3	3	-	-	12
Part-III	11	11	11	11	22	25	91
Part-IV	4	4	4	6	4	2	24
Part-V	_	-	-	-	-	1	1
Total	21	21	21	23	26	28	140

Consolidated Semester wise and Component wise Credit Distribution

4.2.1 PART I: Tamil and Other Languages: Tamil or any one of the following Modern (Indian or Foreign) or Classical languages at the option of candidates and according to the syllabus and text-books prescribed from time to time:

4.2.2 PART II: English: According to the syllabus and text-books prescribed from time to time

4.2.3 PART III: Core, and Generic/Discipline specific Elective Courses: As prescribed by the concerned Board of Studies

4.2.4. PART IV: Basic Tamil/ Advanced Tamil/ SEC (Skills Enhancement Course):

- **a.** Students who have not studied Tamil up to XII STD and have taken any Language other than Tamil in Part I shall take Basic Tamil comprising of Two Courses (level will be at 6th Standard).
- **b.** Students who have studied Tamil up to XIISTD and have taken any Language other than Tamil in Part I shall take Advanced Tamil comprising of Two Courses.
- **c.** Students who have studied Tamil up to XIISTD and also have taken Tamil in Part I shall take Non-Major Elective comprising of TwoCourses.
- **d.** Foundation Course
- e. Professional Competency Skill
- f. Summer Internship
- g. EVS
- **h.** Value Education

4.2.5 PART V: Extension Activities:

Students shall be awarded a maximum of 1 Credit for Compulsory Extension Service. All the

Studentsshall have to enrol for NSS /NCC/ NSO (Sports & Games) Rotract / Youth Red Cross or any other Service Organizations in the College and shall have to put in compulsory minimum attendance of 40 hours which shall be duly certified by the Principal of the College before 31st March in a year. If a student lacks 40 hours attendance in the first year, he or she shall have to compensate the same during the subsequent years.

Those students who complete minimumattendance of 40 hours in one year will get 'half-acredit and those who complete the attendance of 80 or more hours in Two Years will get 'one credit'. Literacy and Population Education and Field Work shall be compulsory components in the above extension service activities.

4.2.6 Scheme of Examinations and Syllabus of programme as

Credit Distribution for B.Sc., Physics Programme, Courses with Laboratory Hours

Part	List of Courses	Credit	No. of Hours
Part-I	Language – Tamil/Sanskrit	3	4
Part-II	English	3	6
	Core Theory 1 – Properties of Matter and Acoustics	4	6
Part-III	Core Practical 1 – Physics Practical 1	2	3
	Generic Specific Elective Theory - Mathematics 1	5	7
Part-IV	Skill Enhancement Course SEC-1 (NME) – Physics for Everyday Life	2	2
	Foundation Course – Introductory Physics	2	2
		21	30

First Year Semester-I

	Semester-II		
Part	List of Courses	Credit	No. of Hours
Part-I	Language – Tamil/Sanskrit	3	4
Part-II	English	3	6
	Core Theory 2 – Heat, Thermodynamics and Statistical Physics	4	6
Part-III	Core Practical 2 – Physics Practical 2	2	3
	Generic Specific Elective Theory - Mathematics 2	5	7
Part-IV	Skill Enhancement Course -SEC-2 – Astrophysics	2	2
	Skill Enhancement Course -SEC-3 – Energy Physics	2	2
		21	30

Second Year

Semester-III

Part	List of Courses	Credit	No. of Hours
Part-I	Language - Tamil/Sanskrit	3	4
Part-II	English	3	4
	Core Theory 3 – Mechanics	4	6
Part-III	Core Practical 3 – Physics Practical 3	2	3
	Generic Specific Elective Theory - Chemistry 1	3	5
	Generic Specific Elective - Chemistry Practical 1	2	3
Part-IV	Skill Enhancement Course -SEC-4 (Entrepreneurial Based) – Home Electrical Installation	2	2
	Skill Enhancement Course -SEC- 5 - Materials Science	2	2
	EVS	-	1
		21	30

Part	List of Courses	Credit	No. of Hours
Part-I	Language - Tamil/Sanskrit	3	4
Part-II	English	3	4
	Core Theory 4 – Optics and Laser Physics	4	6
Part-III	Core Practical 4 – Physics Practical 4	2	3
1 art-111	Generic Specific Elective Theory - Chemistry 2	3	5
	Generic Specific Elective - Chemistry Practical 2	2	3
Part-IV	Skill Enhancement Course -SEC-6 – Medical Physics	2	2
I ult I V	Skill Enhancement Course -SEC-7 – Physics of Music	2	2
	EVS	2	1
		23	30

Semester-IV

Third Year Semester-V

Part	List of Courses	Credit	No. of Hours
Part-III	Core Theory 5 – Electricity, Magnetism and Electromagnetism		5
	Core Theory 6 – Atomic and Nuclear Physics	4	5
	Core Theory 7 – Analog and Communication Electronics	4	5
	Core Practical 5 – Physics Practical 5	2	3
	Elective Course 1 (Discipline Specific) – Mathematical Physics	4	5
	Elective Course 2 (Discipline Specific) – Nano Science and Nano technology	4	5
Part-IV	Internship / Industrial Training (Carried out in II Year Summer Vocation) (30 Hours)	2	-
	Value Education	2	2
		26	30

Part	List of Courses	Credit	No. of Hours
	Core Theory 8 – Quantum Mechanics and Relativity	4	5
Part-III	Core Theory 9 – Solid State Physics	4	5
	Core Theory 10 – Digital Electronics and Microprocessor 8085	4	5
	Core Practical 6 – Physics Practical 6	2	3
	Elective Course 3 (Discipline Specific) – Medical Instrumentation	4	4
	Elective Course 4 (Discipline Specific) – Laser and Fiber Optics	4	4
	Project	3	-
Part-IV	Professional competency Skill – Problem Solving Skills in Physics	2	2
Part-V	Extension Activity, NSS/NCC/YRC/Physical Education (Outside College Hours)	1	-
		28	30

Semester-VI

ELECTIVES COURSES (EC)

- 1. COMMUNICATION SYSTEMS
- 2. ENERGY PHYSICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. NUMERICAL METHODS AND C PROGRAMMING
- 6. MATERIALS SCIENCE
- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. NANO SCIENCE AND NANO TECHNOLOGY
- 10. MEDICAL INSTRUMENTATION
- 11. PROBLEM SOLVING SKILLS IN PHYSICS

NON-MAJOR ELECTIVES (NME)

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- 3. MEDICAL PHYSICS
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC

4.2.6.1 EXAMINATION AND EVALUATION

4.2.6.2. Register for all subjects: Students shall be permitted to proceed from the First Semester up to Final Semester irrespective of their failure in any of the Semester Examination. For this purpose, Students shall register for all the arrear subjects of earlier semesters along with the current (subsequent) Semester Subjects.

4.2.6.3 Marks for Internal and End Semester Examinations for PART I, II,	
III, and IV	

Categor	Theor	Practica
у	У	1
Internal Assessment	25	25
End semester (University) Examination	75	75

4.2.6.4. Procedure for Awarding Internal Marks

Course	Particulars	Mark
		S
	Tests (2 out of 3)	10
Theory Papers	Attendance	05
	Seminars	05
	Assignments	05
	Total	25
	Attendance	05
Practical Papers	Test best 2 out of 3	10
-	Record	10
	Total	25
	Internal Marks	20
Project	(best 2 out of 3 presentations)	
1 10,000	Viva-Voce	20
	Project Report	60
	Total	100

4.2.6.5 (i) Awarding Marks for Attendance (out of 5)

Attendance below 60% = 0 marks,

60 % to 75% = 3 marks,

75 % to 90% = 4 marks and

above 90% = 5 marks

(ii) Conducting Practical and Project Vivavoce Examination: By Internal and External Examiners

4.2.6.6 Improvement of Internal Assessment Marks.

Should have cleared end-semester University examination with more than 40% Marks in UG.

Should have obtained less than 30% marks in theInternal Assessment

4.2.6.7 Should be permitted to improve internal assessment within N+2 years where N is denoted for number of years of the programme.

- **4.2.6.8** Chances for reassessment will be open only for 25% of all core courses in Colleges and only one chance per course will be given.
- **4.2.6.9** The Principal will decide based on the request for reassessment and designate a faculty member of the department to conduct the examination andevaluation.
- **4.2.6.10** The reassessment may be based on a written test / assignment or any other for the entire internal assessment marks.
- **4.2.6.11** The candidate must register for examination in the on- line system along with prescribed examination fee for that course.

Question Paper Pattern for End Semester (University)Examination

	SECTIO	N–A					
10	questions	out	of	12	30 words	10 X	20 Marks
Que	stions					2	
SE (CTION – B				÷		•
5	questions	out	of	7	200 words	5 X 5	25 Marks
Que	stions						
SE (CTION – C						•
3	questions	out	of	5	500 words	3 X	30 Marks
Que	estions					10	
						Total	75 Marks

PASSING MINIMUM

- **1.** There shall be no passing minimum for Internal.
- 2. For external examination, passing minimum shall be 40% [Forty Percentage] of the maximum marks prescribed for the paper for each Paper/Practical/Project and Viva-Voce.
- **3.** In the aggregate [External/Internal] the passing minimum shall be of 40%.
- 4. He/She shall be declared to have passed the whole examination, if he/she passes in all the papers and practical wherever prescribed as per the schemeof the examinations by earning **140 CREDITS** inPartI, II, III, IV & V. He/she shall also fulfil the extension activities prescribed earning a minimum of 1 credit to qualify for the Degree.

INSTANT EXAMINATION: Instant Examinations is conducted for the students who appeared in the finalsemester examinations. Eligible criteria for appearing in the Instant Examinations are as follows:

- **1. Eligibility:** A Student who is having arrear of only one theory paper in the current final semester examination of the UG Degree programme alone is eligible to appear for the Instant Examinations.
- 2. Non-eligibility for one arrear paper: A Student who is having more than one arrear paper at the time of publication of results is not eligible to appear for the Instant Examinations.
- **3. Non-eligibility for arrear in other semester:** Student having arrear in any other semester is not eligible and a Student who is absent in the current appearance is also not eligible for appearing for the Instant Examinations and those Student who have arrear in Practical/Project are not eligible for the Instant Examinations.
- **4.** Non-eligibility for those completed the program: Students who have completed their Program duration but having arrears are not eligible to appear for Instant Examinations.

RETOTALLING, REVALUATION AND PHOTOCOPY OF THE ANSWER SCRIPTS:

- **1. Re-totaling:** All UG Students who appeared for their Semester Examinations are eligible for applying for re-totaling of their answer scripts.
- **2. Revaluation**: All current batch Students who have appeared for their Semester Examinations are eligible for Revaluation of their answer scripts. Passed out candidates are not eligible for Revaluation.
 - i. **Photocopy of the answer scripts**: Students who have applied for revaluation can download their answer scripts from the University Website after fifteen days from the date of publication of theresults.
- **3.** The examination and evaluation for MOOCs will be as per the requirements of the Courses and will be specified at the beginning of the Semester in which such courses are offered and will be notified by the University

5.CLASSIFICATION OF SUCCESSFUL STUDENTS

5.1 PART I TAMIL / OTHER LANGUAGES; PART II ENGLISH AND PART III CORE SUBJECTS, ALLIED, ELECTIVES COURSES AND PROJECT:

Successful Studentspassing the Examinations for the Part I, Part II and Part III courses and securing the marks (a) 60 percent and above and (b) 50 percent and above but below 60 percent in the aggregate shall be declared to

have passed the examination in the **FIRST and SECOND** class respectively; all other successful candidates shall be declared to have passed the examination in the **THIRD Class**

RANGE OFMAR KS	GRADEPOIN TS	LETTERGR ADE	DESCRIPTI ON
90-100	9.0-10.0	0	Outstanding
80-89	8.0-8.9	D+	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	A+	Very Good
60-69	6.0-6.9	А	Good
50-59	5.0-5.9	В	Average
40-49	4.0-4.9	С	Satisfactory
00-39	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

5.2 **MARKS AND GRADES:** The following table shows the marks, grade points, letter grades and classification to indicate the performance of the Student:

5.3 Computation of Grade Point Average (GPA) in a Semester, Cumulative Grade Point Average (CGPA) and Classification GPA for a Semester: = $\sum iCiGi \div \sum iCi$

That is, GPA is the sum of the multiplication of grade points by the credits of the courses divided by the sum of the credits of the courses in a semester.

CGPA for the entire programme: = $\sum n \sum iCniGni \div \sum n \sum iCni$ That is, CGPA is the sum of the multiplication of gradepoints by the credits of the entire programme divided by the sum of the credits of the courses of the entire programme Where,

Ci= Credits earned for course i in any semester,

Gi = Grade Points obtained for course i in any semestern = Semester in which such courses were credited.

CGPA	GRAD	CLASSIFICATIO
	E	N OF
		FINAL RESULT
9.5-10.0	O +	First Class -
9.0 and above but below 9.5	0	Exemplary
		*
8.5 and above but below 9.0	D + +	First Class with
8.0 and above but below 8.5	D +	Distinction *
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A + +	First Class

5.4 Letter Grade and Class

6.5 and above but below 7.0	A +	First Class
6.0 and above but below 6.5	А	
5.5 and above but below 6.0	B +	Second Class
5.0 and above but below 5.5	В	Second Class
4.5 and above but below 5.0	C +	Third Class
4.0 and above but below 4.5	C	
0.0 and above but below 4.0	U	Re-appear

*The students who have passed in the first appearance and within the prescribed semester of the UG Programme (Major, Allied and Elective courses only) are eligible.

6 RANKING

Students who pass all the examinations prescribed for the Program in the **FIRST APPEARANCE ITSELF ALONE** are eligible for Ranking / Distinction, provided in the case of Students who pass all the examinations prescribed for the Program with a break in the First Appearance due to the reasons as furnished in the Regulations **6** supra are only eligible for Classification.

7 CONCESSIONS FOR DIFFERENTLY-ABLED STUDENTS

- 7.1 **Dyslexia students:** For students who are mentally disabled, learning disability and mental retardation, who are slow learners, who are mentally impaired having learning disorder and seizure disorder and students who are spastic and cerebral Palsy, the following concessions shall be granted:
 - i) Part I Foundation course Tamil or any other Language can be exempted.
 - ii) One-third of the time of paper may be given as extra time in the examination.
 - iii) Leniency in overlooking spelling mistakes, and
 - iv) Amanuensis for all courses provided the requestis duly certified by the Medical Board of the Government Hospital/ General Hospital/ District headquarters Hospitals and they shall be declared qualified for the degree if they pass the other examinations prescribed for the degree.
- 7.2 **Hearing, Speaking Impaired & Mentally retarded:** For students who are hearing and speaking impaired and who are mentally challenged, the following concessions shall be granted:
 - i) One Language paper either Part I Foundation course Tamil or any other Language or Part II English or its equivalent can be exempted
 - ii) Part IV Non-Major Elective (NME) or Basic Tamil or Advanced Tamil can be exempted.

7.3 Visually Challenged students:

- i) Exempted from paying examination fees.
- ii) A scribe shall be arranged by the College and the scribe be paid as per the College decision.

8 MAXIMUM PERIOD FOR COMPLETION OF THE PROGRAMS TO QUALIFY FOR A DEGREE

- 8.1 A Student who for whatever reasons is not able to complete the program within the normal period (N)or the Minimum duration prescribed for the programme, may be allowed two years period beyond the normal period to clear the backlog tobe qualified for the degree. (Time Span = N + 2 years for the completion of programme.)
- 8.2 In exceptional cases like major accidents and child birth an extension of one year be considered beyond maximum span of time(Time Span = N + 2+1 years for the completion of programme).
- **8.3** Students qualifying during the extended period shall not be eligible for **RANKING.**

8.4 Inclusion of the Massive Open Online Courses (MOOCs) available on SWAYAM, NPTEL and other such portals approved by the University Authorities.

8.4.1 The Chairperson, Board of Studies consider the available MOOCs and choose the courses to be included under Core, Elective and Soft Skill category and also the number of credits for such courses based on the content and duration of course. The credit for such courses shall be included as part of the Core, Elective and Soft Skill to award the Degree. The number of credit will be decide at the University level for such courses which are relevant to more than one department such as soft skills and elective courses.

9. REQUIREMENTS FOR PROCEEDING TO SUBSEQUENTSEMESTER

- 9.1 **Eligibility:** Students shall be eligible to go to subsequentsemester only if they earn sufficient attendance asprescribed therefor by the Syndicate from time to time.
- 9.2 Attendance: All Students must earn 75% and above of attendance for appearing for the UniversityExamination. (Theory/Practical)
- 9.3 **Condonation of shortage of attendance**: If a Student fails to earn the minimum attendance (Percentage stipulated), the Principals shall condone the shortage of attendance up to a maximum limit of 10% (i.e. between 65% and above and less than 75%) after collecting the prescribed fee of Rs.250/-each for Theory/Practical examination separately,(TheoryRs.250/-Per semester/Per Student: Practical Rs.250/- Per semester/Per Student) towards the condonation of shortage of attendance. Such fees collected and should be remitted to the University.
- 9.4 **Non-eligibility for condonation of shortage of attendance:** Students who have secured less than 65

% but more than 50 % of attendance are NOT ELIGIBLE for condonation of shortage of attendance and such Students will not be permitted to appear for the regular examination, but will be allowed to proceed to the next year/next semester of the program and they may be permitted to take next University examination by paying the prescribed condonation fee of Rs.250/- each for Theory/Practical separately. Such fees shall be remitted to the University. Name of such Students should be forwarded to the University along with their attendance details in the prescribed format mentioning the category (3 copies) Year wise/Branch wise/Semester wise together with the fees collected from them, so as to enable them to get

permission from the University and to attend the Theory/Practicalexamination subsequently without any difficulty.

9.5 Detained students for want of attendance:

Students who have earned less than 50% of attendance shall be permitted to proceed to the next semester and to complete the Program of study. Such Students shallhave to repeat the semester, which they have missed by rejoining after completion of final semester of the course, by paying the fee for the break of study asprescribed by the University from time to time.

- 9.6 **Condonation of shortage of attendance for married women students**: In respect of married women students undergoing UG programs, the minimum attendance for condonation (Theory/Practical) shall be relaxed and prescribed as 55% instead of 65% if they conceive during their academic career. Medical certificate from the Doctor(D.G.O) attached to the Government Hospital and the prescribed fee of Rs.250/-therefor together with the attendance details shall be forwarded to the university to consider the condonation of attendance mentioning the category.
- 9.7 **Zero Percent (0%) Attendance:** The Students, who have earned 0% of attendance, have to repeat the program (by rejoining) without proceeding to succeeding semester and they have to obtain prior permission from the University immediately to rejoin the program.
- 9.8 **Transfer of Students and Credits**: The strength of the credits system is that it permits inter Institutional transfer of students. By providing mobility, it enables individual students to develop their capabilities fully by permitting them to move from one Institution to another in accordance with their aptitude and abilities.
- 9.8.1 Transfer of Students is permitted from one Institution to another Institution for the same program with same nomenclature. Provided, there is a vacancy in the respective program of Study in the Institution where the transfer is requested. Provided the Student should have passed all the courses in the Institution from where the transferis requested.
- 9.8.2 The marks obtained in the courses will be converted and grades will be assigned as per the University norms.
- 9.8.3 The transfer students are eligible for classification.
- 9.8.4 The transfer students are not eligible for Ranking, Prizes and Medals.
- 9.8.5 Students who want to go to foreign Universities upto two semesters or Project Work with the prior approval of the Departmental/College Committee are allowed to get transfer of credits and marks which will be converted into Grades asper the University norms and are eligible to get CGPA and Classification; they are not eligible for Ranking, Prizes and Medals.
 - 9.9 Students are exempted from attendance requirements for online courses of the University and MOOCs.

9.9.1 Improvement of Internal Assessment Marks.

9.9.1.1 Should	have	cleared end-semester	University	examination
with more than40%	Marks in	UG.	-	

- 9.9.1.2 Should have obtained less than 30% marks in theInternal Assessment
- 9.9.1.3 Should be permitted to improve internal assessment within N+2 years where N is denoted for number of years of the programme.
- 9.9.1.4 Chances for reassessment will be open only for 25% of all core courses in Colleges and only one chance per course will be given.
- 9.9.1.5 The principal will decide based on the request for reassessment and designate a faculty member of the department to conduct the examination and evaluation.
- 9.9.1.6 The reassessment may be based on a written test / assignment or any other for the entire internal assessment marks.
- 9.9.1.7 The candidate must register for examination in the on- line system along with prescribed examination fee for that course.
 - a. The examination and evaluation for MOOCs will be as perthe requirements of the Courses and will be specified at the beginning of the Semester in which such courses are offered and will be notified by the University

10 CLASSIFICATION OF SUCCESSFUL STUDENTS

10.1PART I TAMIL / OTHER LANGUAGES; PART II ENGLISH AND PART III CORE SUBJECTS, ALLIED, ELECTIVES COURSES AND PROJECT: Successful Students passing the Examinations for the Part I, Part II and Part III courses and securing the marks (a) 60 percent and above and (b) 50 percent and above but below 60 percent in the aggregate shall be declared to have passed the examination in the FIRST and SECOND class respectively; all other successful candidates shall be declared to have passed the examination in the THIRD Class.

11 CONCESSIONS FOR DIFFERENTLY-ABLED STUDENTS

- 11.1 **Dyslexia students:** For students who are mentally disabled, learning disability and mental retardation, who are slow learners, who are mentally impaired having learning disorder and seizure disorder and students who are spastic and cerebral Palsy, the following concessions shall be granted:
 - v) Part I Foundation course Tamil or any other Language can be exempted.
 - vi) One-third of the time of paper may be given as extra time in the examination.
 - vii) Leniency in overlooking spelling mistakes, and
 - viii)Amanuensis for all courses provided the requestis duly certified by the Medical Board of the Government Hospital/ General Hospital/ District headquarters Hospitals and they shall be declared qualified for the degree if they pass the other examinations prescribed for the degree.
- 11.2 **Hearing, Speaking Impaired & Mentally retarded:** For students who are hearing and speaking impaired and who are mentally challenged, the following concessions shall be granted:
 - iii) One Language paper either Part I Foundation course Tamil or any other Language or Part II English or its equivalent can be exempted
 - iv) Part IV Non-Major Elective (NME) or Basic Tamil or Advanced Tamil can be exempted.

11.3 Visually Challenged students:

- iii) Exempted from paying examination fees.
- iv) A scribe shall be arranged by the College and the scribe be paid as per the College decision.

12 MAXIMUM PERIOD FOR COMPLETION OF THE PROGRAMS TO QUALIFY FOR A DEGREE

- 12.1 A Student who for whatever reasons is not able to complete the program within the normal period (N)or the Minimum duration prescribed for the programme, may be allowed two years period beyond the normal period to clear the backlog tobe qualified for the degree. (Time Span = N + 2 years for the completion of programme)
- 12.2 In exceptional cases like major accidents and child birth an extension of one year be considered beyond maximum span of time(Time Span = N + 2

+1 years for the completion of programme).

12.3 Students qualifying during the extended period shallnot be eligible for **RANKING**.

.....

COURSE	FIRST SEMESTER – CORE THEORY 1
COURSE TITLE	PROPERTIES OF MATTER AND ACOUSTICS
CREDITS	4
COURSE OBJECTIVES	Study of the properties of matter leads to information which is of practical value to both the physicist and the engineers. It gives us information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.

UNITS	COURSE DETAILS			
UNIT-I	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)			
UNIT-II	BENDING OF BEAMS: Cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope			
UNIT-III	 FLUID DYNAMICS: Surface tension: Definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method– variation of surface tension with temperature Viscosity: Definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with 			
UNIT-IV	temperatureWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM)- differential equation of SHM – graphical representation of SHM –composition of two SHM in a straight line and at right angles –Lissajous's figures- free, damped, forced vibrations –resonance andSharpness of resonance.Laws of transverse vibration in strings –sonometer – determination ofAC frequency using sonometer–determination of frequency usingMelde's string apparatus.			
UNIT-V	ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. <i>Ultrasonic waves</i> : production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves			

	PROFESSIONAL COMPONENTS: expert lectures –seminars –
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	1. D. S. Mathur, 2010, Elements of Properties of Matter,
	S. Chand and Co.
	2. Brij Lal and N. Subrahmanyam, 2003, Properties of Matter, S.
	Chand and Co
TEXT BOOKS	3. D. R. Khanna and R. S. Bedi, 1969, Textbook of Sound,
	Atma Ram and sons
	4. Brij Lal and N. Subrahmanyam, 1995, A Text Book of Sound,
	Second revised edition, Vikas Publishing House.
	5. R. Murugesan, 2012, Properties of Matter, S. Chand and Co.
	1. C. J. Smith, 1960, General Properties of Matter, Orient Longman
	Publishers
REFERENCE	2. H. R. Gulati, 1977, Fundamental of General Properties of Matter,
BOOKS	Fifth edition, S. Chand and Co.
	3. A. P. French, 1973, Vibration and Waves, MIT Introductory
	Physics, Arnold-Heinmann India.
	1. https://www.biolinscientific.com/blog/what-are-surfactants-and-
	how-do-they-work
	2. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
	3. <u>https://www.youtube.com/watch?v=gT8Nth9NWPM</u>
WED	4. <u>https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s</u>
WEB	5. https://www.biolinscientific.com/blog/what-are-surfactants-and-
RESOURCES	how-do-they-work
	6. https://learningtechnologyofficial.com/category/fluid-mechanics-
	<u>lab/</u>
	7. http://www.sound-physics.com/
	8. <u>http://nptel.ac.in/courses/112104026/</u>

Continuous Internal Assessment	End Semester Examination	Total
25	75	100

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Relate elastic behavior in terms of three moduli of elasticity and working of torsion pendulum.						
COURSE	CO2 Able to appreciate concept of bending of beams an expression, quantify and understand nature of mate							
OUTCOMES	CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.						

CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains
CO5	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Able to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	Μ	S	Μ	М	S	Μ	S
CO2	М	S	S	S	Μ	Μ	S	М	S	S
CO3	S	М	S	Μ	S	S	М	S	S	S
CO4	S	S	S	S	S	Μ	S	М	Μ	Μ
CO5	М	М	S	S	Μ	S	S	S	S	М

COURSE	FIRST SEMESTER – CORE PRACTICAL 1
COURSE TITLE	PRACTICAL - 1
CREDITS	2
COURSE	Apply various physics concepts to understand Properties of Matter,
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able
	to do error analysis and correlate results

Properties of Matter

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)

14. Determination of rigidity modulus by static torsion.

15. Determination of Y, n and K by Searle's double bar method.

16. Determination of surface tension and interfacial surface tension by drop weight method.

17. Determination of co-efficient of viscosity by Stokes' method – terminal velocity.

18. Determination of critical pressure for streamline flow.

19. Determination of Poisson's ratio of rubber tube.

20. Determination of viscosity by Poiseullie's flow method.

21. Determination of radius of capillary tube by mercury pellet method.

22. Determination of g using compound pendulum.

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIRST SEMESTER - SKILL ENHANCEMENT COURSE					
	SEC-1 (NME)					
COURSE TITLE	E PHYSICS FOR EVERYDAY LIFE					
CREDITS	2					
Course Objective	e: To know where all physics principles have been put to use in daily life					
and appreciate the	concepts with a better understanding also to know about Indian scientists					
who have made si	gnificant contributions to Physics					
UNITS	COURSE DETAILS					
UNIT-I	MECHANICAL OBJECTS: spring scales – bouncing balls –roller					
	coasters – bicycles –rockets and space travel.					
	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses					
UNIT-II	- polaroid glasses - UV protective glass - polaroid camera - colour					
	photography – holography and laser.					
	PHYSICS OF HOME APPLIANCES: bulb - fan - hair drier -					
UNIT-III	television – air conditioners – microwave ovens – vacuum cleaners					
	SOLAR ENERGY: Solar constant – General applications of solar					
UNIT-IV	energy - Solar water heaters - Solar Photo - voltaic cells - General					
	applications of solar cells.					
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS: C. V.					
UNIT-V	Raman, Homi Jehangir Bhabha, Vikram Sarabhai, Subrahmanyan					
	Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and					
	their contribution to science and technology.					
	1. The Physics in our Daily Lives, Umme Ammara, Gurucool					
TEXT BOOKS	Publishing, Hyderabad, 2019.					
	2. For the love of physics, Walter Lawin, Free Press, New York, 2011.					

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Understand the different mechanical objects.
COURSE	CO2	Will able to gain basic knowledge of optical instruments and laser
OUTCOMES	CO3	This course enables students to learn about home appliances
	CO4	This course gives an idea about solar energy
	CO5	Students can learn the Indian physicist and their contributions to the society.

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	INTRODUCTORY PHYSICS
CREDITS	2
COURSE	To help students get an overview of Physics before learning their core
OBJECTIVES	courses. To serve as a bridge between the school curriculum and the
	degree programme.

UNITS	COURSE DETAILS
UNIT-I	Vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants
UNIT-II	Different types of forces–gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	Different forms of energy– conservation laws of momentum, energy – types of collisions –angular momentum– alternate energy sources– real life examples
UNIT-IV	Types of motion–linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion – comparison of light and sound waves – free, forced, damped oscillations

UNIT-V	Surface tension – shape of liquid drop – angle of contact – viscosity – lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 D.S. Mathur, 2010, Elements of Properties of Matter, S. Chand and Co Brij Lal and N. Subrahmanyam, 2003, Properties of Matter, S. Chand and Co.
REFERENCE	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter,
BOOKS	Fifth edition, S. Chand and Co.
WEB RESOURCES	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/</u> <u>https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSE OUTCOMES	CO3	Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2

CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3

	AT, THERMODYNAMICS AND STATISTICAL PHYSICS
CREDITS 4	
OBJECTIVES tem exh con life	e course focuses to understand a basic in conversion of perature in Celsius, Kelvin and Fahrenheit scales. Practical ibition and explanation of transmission of heat in good and bad ductor. Relate the laws of thermodynamics, entropy in everyday and explore the knowledge of statistical mechanics and its tion

UNITS	COURSE DETAILS
	CALORIMETRY: specific heat capacity – specific heat capacity
	of gases C_P and C_{V-} Meyer's relation – Joly's method for
	determination of C_V – Regnault's method for determination of C_P
UNIT-I	
	LOW TEMPERATURE PHYSICS: Joule-Kelvin effect – porous
	plug experiment – Joule-Thomson effect –Boyle temperature – temperature of inversion – liquefaction of gas by Linde's Process –
	adiabatic demagnetisation.
	THERMODYNAMICS-I: zeroth law and first law of
	thermodynamics – P-V diagram – heat engine –efficiency of heat
UNIT-II	engine – Carnot's engine, construction, working and efficiency of
	petrol engine and diesel engines – comparison of engines.
	THERMODYNAMICS-II: second law of thermodynamics –
	entropy of an ideal gas - entropy change in reversible and
	irreversible processes - T-S diagram -thermodynamical scale of
UNIT-III	temperature - Maxwell's thermodynamical relations -Clasius-
	Clapeyron's equation (first latent heat equation) - third law of
	thermodynamics – unattainability of absolute zero – heat death.
	HEAT TRANSFER: modes of heat transfer: conduction,
	convection and radiation.
	<i>Conduction</i> : thermal conductivity – determination of thermal conductivity of a good conductor by Forbe's method – determination
	of thermal conductivity of a bad conductor by Lee's disc method.
UNIT-IV	of thermal conductivity of a bad conductor by Lee's disc method.
	<i>Radiation</i> : black body radiation (Ferry's method) – distribution of
	energy in black body radiation – Wien's law and Rayleigh Jean's
	law –Planck's law of radiation – Stefan's law – deduction of
	Newton's law of cooling from Stefan's law.
	STATISTICAL MECHANICS: definition of phase-space – micro
	and macro states - ensembles -different types of ensembles -
UNIT-V	classical and quantum Statistics – Maxwell-Boltzmann statistics –
	expression for distribution function – Bose-Einstein statistics –
	expression for distribution function – Fermi-Dirac statistics –

	expression for distribution function – comparison of three statistics.
	expression for distribution function — comparison of three statistics.
	PROFESSIONAL COMPONENTS: Expert lectures –seminars –
UNIT-VI	– webinars – industry inputs – social accountability – patriotism
	1. Brij Lal and N. Subramaniam, 2000, Heat and Thermodynamics,
	S. Chand and Co.
	2. Narayana Moorthy and Krishna Rao, 1969, Heat, Triveni
	Publishers, Chennai.
	3. V. R. Khanna and R. S. Bedi, 1998 1 st Edition, Text book of
TEXT BOOKS	Sound, Kedharnaath Publish and Co, Meerut
	4. Brij Lal and N. Subramanyam, 2001, Waves and Oscillations,
	Vikas Publishing House, New Delhi.
	5. Ghosh, 1996, Text Book of Sound, S. Chand and Co.
	6. R. Murugeshan and Kiruthiga Sivaprasath, Thermal Physics,
	S. Chand and Co.
	1. J. B. Rajam and C. L. Arora, 1976, Heat and Thermodynamics,
	8 th edition, S. Chand and Co. Ltd.
	2. D. S. Mathur, Heat and Thermodynamics, Sultan Chand and
	Sons.
REFERENCE	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th
BOOKS	Edition, S. Chand and Co.
	4. Resnick, Halliday and Walker, 2010, Fundamentals of Physics,
	6th Edition.
	5. Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021
	University Physics with Modern Physics 15th Edition, Pearson.
	1. <u>https://youtu.be/M_5KYncYNyc</u>
	2. <u>https://www.youtube.com/watch?v=4M72kQulGKkandvl=en</u>
WEB	3. Lecture 1: Thermodynamics Part 1 Video Lectures Statistical
RESOURCES	Mechanics I: Statistical Mechanics of Particles Physics MIT
	Open Course Ware
	4. <u>http://www.freebookcentre.net/Physics/Physics-Books-</u>
	<u>Online.html</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE	CO1	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat capacity. The study of Low
OUTCOMES		temperature Physics sets the basis for the students to understand cryogenics, superconductivity, superfluidity and Condensed Matter Physics

СО	implications of the laws of Thermodynamics in diesel and petrol
	engines
CO	3 Able to analyze performance of thermodynamic systems viz
	efficiency by problems. Gets an insight into thermodynamic
	properties like enthalpy, entropy
CO	4 Study the process of thermal conductivity and apply it to good
	and bad conductors. Quantify different parameters related to
	heat, relate them with various physical parameters and analyse
	them
CO	Interpret classical statistics concepts such as phase space,
	ensemble, Maxwell-Boltzmann distribution law. Develop the
	statistical interpretation of Bose-Einstein and Fermi-Dirac.
	Apply to quantum particles such as photon and electron

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

COURSE	SECOND SEMESTER – CORE PRACTICAL 2
COURSE TITLE	PRACTICAL 2
CREDITS	2
COURSE	Apply their knowledge gained about the concept of heat and sound
OBJECTIVES	waves, resonance, calculate frequency of ac mains set up
	experimentation to verify theories, quantify and analyse, able to do
	error analysis and correlate results

HEAT, OSCILLATIONS, WAVES AND SOUND

Minimum of Eight Experiments from the list:

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's- Boltzmann's law.
- 10. Determination of thermal conductivity of rubber tube.

- 11. Helmholtz resonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kund's tube.
- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.
- 18. Frequency of AC by using sonometer.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SECOND SEMESTER - SKILL ENHANCEMENT COURSE					
COURSE	SEC-2 (NME)					
COURSE TITLE						
CREDITS	2					
Course Objective	: This course intends to introduce principles of astrophysics describing					
the science of for	rmation and evolution of stars and interpretation of various heavenly					
phenomena and pr	rovide an understanding of the physical nature of celestial bodies along					
with the instrumer	ntation and techniques used in astronomical research					
UNITS	COURSE DETAILS					
	TELESCOPES: Optical telescopes - magnifying power, brightness,					
UNIT-I	resolving power and f/a ratio - types of reflecting and refracting					
UNII-I	elescopes – detectors and image processing – radio telescopes – Hubble					
	space telescope.					
	SOLAR SYSTEM: Bode's law of planetary distances - meteors,					
UNIT-II	meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of					
	gravitational waves – recent advances in astrophysics.					
	ECLIPSES: Types of eclipses – solar eclipse – total and partial solar					
	eclipse – lunar eclipse – total and partial lunar eclipse – transits.					
UNIT-III	THE SUN: Physical and orbital data – solar atmosphere – photosphere					
UNIT-III	-chromosphere-solarcorona-prominences-sunspots-11 yearsolar					
	cycle – solar flares.					
	STELLAR EVOLUTION: H-R diagram – birth and death of low mass,					
	intermediate mass and massive stars - Chandrasekar limit - white					
UNIT-IV	dwarfs – neutron stars – pulsars – black holes – supernovae.					
	GALAXIES: Classification of galaxies – galaxy clusters –interactions					
	of galaxies, dark matter and super clusters – evolving universe.					
	ACTIVITIES IN ASTROPHYSICS:					
	 (i) Basic construction of telescope (ii) Development of the second second					
	(ii) Develop models to demonstrate eclipses/planetary motion					
UNIT-V	(iii) Night sky observation (iv) Conduct case study participing to any topic in this paper					
	(iv) Conduct case study pertaining to any topic in this paper					
	(v) Visit to any one of the National Observatories					
	Any three activities to be done compulsorily.					

TEXT BOOKS printing, Prentice – Hall of India (P) Ltd, New Delhi2.K. S. Krishnaswamy, (2002), Astrophysics – a modern perspective, New Age International (P) Ltd, New Delhi.3.Shylaja, B.S. and Madhusudan, H.R, (1999), Eclipse: A Celestial Shadow Play, Orient Black Swan,
--

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Students can learn about the different types of telescopes.
COURSE	CO2	This course enables students to understand about solar system
OUTCOMES	CO3	This course enables students to know different types of eclipses
OUTCOMES	CO4	This course gives complete knowledge about galaxies
	CO5	This course gives complete knowledge about Astrophysics through small experiments and field visit.

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SECOND SEMESTER - SKILL ENHANCEMENT COURSE - SEC-3
COURSE TITLE	ENERGY PHYSICS
CREDITS	2
	To get the understanding of the conventional and non-conventional
	r conservation and storage systems.
UNITS	COURSE DETAILS
UNIT-I	INTRODUCTION TO ENERGY SOURCES: Energy consumption as a measure of prosperity – world energy future – energy sources and their availability – conventional energy sources – non-conventional and renewable energy sources – comparison – merits and demerits.
UNIT-II	SOLAR ENERGY: Solar energy Introduction – solar constant – solar radiation at the Earth's surface – solar radiation geometry – Solar radiation measurements – solar radiation data –solar energy storage and storage systems – solar pond – solar cooker – solar water heater – solar greenhouse – types of greenhouses – solar cells.
UNIT-III	WIND ENERGY: Introduction – nature of the wind – basic principle of wind energy conversion – wind energy data and energy estimation – basic components of Wind Energy Conversion Systems (WECS) – advantages and disadvantages of WECS – applications – tidal energy
UNIT-IV	BIOMASS ENERGY: Introduction – classification – biomass conversion technologies –photosynthesis – fermentation - biogas generation –classification of biogas plants – anaerobic digestion for biogas – wood gasification – advantages and disadvantages.
UNIT-V	ENERGY STORAGE: Importance of energy storage- batteries - lead acid battery -nickel-cadmium battery – fuel cells – types of fuel cells – advantages and disadvantages of fuel cells – applications of fuel cells - hydrogen storage.
TEXT BOOKS	 G. D. Rai, Non-Conventional Sources of Energy, Khanna Publishers, 2009, 4thEdn. S. P. Sukhatme, J. K. Nayak, Solar Energy, Principles of Thermal Collection and Storage, McGraw Hill, 2008, 3rdEdn. D. P. Kothari, K. P. Singal, Rakesh Rajan, PHI Learning Pvt Ltd, 2011, 2ndEdn.
REFERENCE BOOKS	 John Twidell and Tony Weir, Renewable Energy Resources, Taylor and Francis, 2005, 2ndEdn. S.A. Abbasi and Nasema Abbasi, Renewable Energy sources and their environmental impact, PHI Learning Pvt. Ltd, 2008. M. P. Agarwal, Solar Energy, S. Chand and Co. Ltd., New Delhi,1982 H. C. Jain, Non-Conventional Sources of Energy, Sterling Publishers,1986.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Can acquire good knowledge of the energy sources.
COURSE	CO2	Understand the solar energy
OUTCOMES	CO3	Will able to gain basic knowledge of wind energy
OUTCOMES	CO4	This course gives an idea about biomass energy
	CO5	This course enables students to learn about different types of
	005	energy storages.

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	THIRD SEMESTER – CORE THEORY 3
COURSETITLE	MECHANICS
CREDITS	4
COURSE OBJECTIVES	This course allows the students: To have a basic understanding of the laws and principles of mechanics; To apply the concepts of forces existing in the system; To understand the forces of physics in everyday life; To visualize conservation laws; To apply Lagrangian equation to solve complex problems.

UNITS	COURSE DETAILS
	LAWS OF MOTION: Newton's Laws – forces – equations of motion – frictional force – motion of a particle in a uniform gravitational field – types of everyday forces in Physics.
UNIT-I	<i>Gravitation</i> : Classical theory of gravitation–Kepler's laws, Newton's law of gravitation – Determination of G by Boy's method – Earth-moon system – weightlessness – earth satellites – parking orbit – earth density – mass of the Sun – gravitational potential – velocity of escape – satellite potential and kinetic energy –Einstein's theory of gravitation – introduction –principle of equivalence – experimental tests of general theory of relativity – gravitational red shift – bending of light – perihelion of mercury.
UNIT-II	CONSERVATION LAWS OF LINEAR AND ANGULAR MOMENTUM: conservation of linear and angular momentum – Internal forces and momentum conservation – center of mass – examples – general elastic collision of particles of different masses – system with variable mass – examples – conservation of angular momentum – torque due to internal forces – torque due to gravity – angular momentum about center of mass – proton scattering by heavy nucleus.
UNIT-III	CONSERVATION LAWS OF ENERGY: Introduction – significance of conservation laws – law of conservation of energy concepts of work- power – energy – conservative forces – potential energy and conservation of energy in gravitational and electric field – examples –non-conservative forces – general law of conservation of energy.
UNIT-IV	RIGID BODY DYNAMICS: t ranslational and rotational motion – angular momentum – moment of inertia – general theorems of moment of inertia – examples – rotation about fixed axis – kinetic energy of rotation – examples – body rolling along a plane surface – body rolling down an inclined plane – gyroscopic precision – gyrostatic applications.
UNIT-V	LAGRANGIAN MECHANICS: generalized coordinates –degrees of freedom – constraints - principle of virtual work and D' Alembert's Principle – Lagrange's equation from D' Alembert's principle – application –simple pendulum – Atwood's machine.
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars – – webinars – industry inputs – social accountability – patriotism

	1. J. C. Upadhyaya, 2019, Classical Mechanics, Himalaya						
	Publishing house, Mumbai.						
	2. P. Durai Pandian, Laxmi Durai Pandian, Muthamizh						
	Jayapragasam, 2005, Mechanics, 6 th revised edition,						
	S. Chand and Co.						
TEXT BOOKS	3. D. S. Mathur and P. S. Hemne, 2000, Mechanics, Revised						
ILAI DOOKS	Edition, S. Chand and Co.						
	4. Narayanamurthi, M. and Nagarathnam. N, 1998, Dynamics. The						
	National Publishing, Chennai.						
	5. Narayanamurthi, M. and Nagarathnam, N, 1982, Statics,						
	Hydrostatics and Hydrodynamics, The National Publishers,						
	Chennai.						
	1. Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison						
	and Wesely.						
REFERENCE	2. Halliday, David and Robert, Resnick, 1995, Physics Vol. I. New						
BOOKS	Age, International, Chennai.						
	3. Halliday, David Robert Resnick and Walker Jearl, 2001,						
	Fundamentals of Physics, John Wiley, New Delhi						
	1. <u>https://youtu.be/X4_K-XLUIB4</u>						
	2. https://nptel.ac.in/courses/115103115						
	3. https://www.youtube.com/watch?v=p075LPq3Eas						
WEB	4. <u>https://www.youtube.com/watch?v=mH_pS6fruyg</u>						
RESOURCES	5. https://onlinecourses.nptel.ac.in/noc22_me96/preview						
	6. https://www.youtube.com/watch?v=tdkFc88Fw-M						
	7. https://onlinecourses.nptel.ac.in/noc21_me70/preview						

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion					
	CO2	Acquire the knowledge on the conservation laws					
COURSE OUTCOMES	CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non-conservative forces					
	CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept					
	CO5	Appreciate Lagrangian system of mechanics, apply D' Alemberts principle					

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	М	S	S
CO2	S	S	S	М	S	Μ	S	S	S	М
CO3	S	S	S	S	S	S	М	S	Μ	S
CO4	М	S	S	S	М	S	S	М	S	S
CO5	S	S	М	S	S	М	S	S	S	М

COURSE	THIRD SEMESTER – CORE PRACTICAL 3
COURSE TITLE	PRACTICAL 3
CREDITS	2
COURSE	Construct circuits to learn about the concept of electricity, current,
OBJECTIVES	resistance in the path of current, different parameters that affect a circuit.
	Set up experiments, observe, analyse and assimilate the concept
EI ECTRICITY	

ELECTRICITY

Minimum of Eight Experiments from the list:

- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth's magnetic field using field along axis of current carrying coil.
- 6. Determination of specific resistance of the material of the wire using PO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of e.m.f of thermo couple using potentiometer
- 11. Determination of capacitance using Desauty's bridge and B.G./Spot galvanometer/head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG.
- 14. Comparison of capacitance using BG.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	THIRD SEMESTER - SKILL ENHANCEMENT COURSE -							
	SEC-4 (ENTREPRENEURIAL BASED)							
COURSE TITLE								
CREDITS								
_	The students will get knowledge on electrical instruments, installations							
	ng techniques with safety precautions and servicing.							
UNITS	COURSE DETAILS							
UNIT-I	SIMPLE ELECTRICAL CIRCUITS: charge, current, potential difference, resistance – simple electrical circuits – DC ammeter, voltmeter, ohmmeter – Ohm's law – difference between DC and AC – advantages of AC over DC – electromagnetic induction - transformers – inductors/chokes – capacitors/condensers – impedance – AC ammeter, voltmeter –symbols and nomenclature							
UNIT-II	TRANSMISSION OF ELECTRICITY: production and transmission of electricity – concept of power grid – Series and parallel connections – technicalities of junctions and loops in circuits –transmission losses (qualitative) – roles of step-up and step-down transformers – quality of connecting wires – characteristics of single and multicore wires							
UNIT-III	ELECTRICAL WIRING: different types of switches – installation of two-way switch – role of sockets, plugs, sockets - installation of meters – basic switch board – electrical bell – indicator – fixing of tube lights and fans – heavy equipment like AC, fridge, washing machine, oven, geyser, jet pumps – provisions for inverter – gauge specifications of wires for various needs							
UNIT-IV	POWER RATING AND POWER DELIVERED: conversion of electrical energy in to different forms – work done by electrical energy – power rating of electrical appliances – energy consumption – electrical energy unit in kWh – calculation of EB bill – Joule's heating – useful energy and energy loss – single and three phase connections – Measures to save electrical energy – energy audit							
UNIT-V	SAFETY MEASURES: insulation for wires – colour specification for mains, return and earth – Understanding of fuse and circuit breakers – types of fuses: kit-kat, HRC, cartridge, MCB, ELCB – purpose of earth line – lighting arrestors – short circuiting and over loading – electrical safety – tips to avoid electrical shock – first aid for electrical shock – fire safety for electric current							
TEXT BOOKS	 Wiring a House: 5th Edition by Rex Cauldwell, (2014). Black and Decker Advanced Home Wiring, 5th Edition: Backup Power - Panel Upgrades - AFCI Protection - "Smart" Thermostats, by Editors of Cool Springs Press, (2018). Complete Beginners Guide to Rough in Electrical Wiring: by Kevin Ryan (2022). 							

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE OUTCOMES	CO1	Acquire knowledge of simple electric circuits
	CO2	Understand the basic transmission of electricity
	CO3	Can acquire knowledge about electrical wiring
	CO4	Learn about conversion of electrical energy into different forms and calculation of EB bill
	CO5	Import knowledge about safety measures form electric shock

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	THIRD SEMESTER - SKILL ENHANCEMENT COURSE -
	SEC-5
COURSE TITLE	MATERIALS SCIENCE
CREDITS	2
•	To learn imperfections in crystals, deformation of materials and testing
of materials. To get	knowledge on behavior of a material, under the action of light and their
applications. To know	ow the applications of crystal defects.
UNITS	COURSE DETAILS
UNIT-I	CRYSTAL IMPERFECTIONS: Introduction – point defects: vacancies (<i>problems</i>), interstitials, impurities, electronic defects – equilibrium concentration of point imperfections (<i>problems</i>)– application of point defects –line defects: edge dislocation (<i>problems</i>), screw dislocation – surface defects: extrinsic defects – intrinsic defects: grain boundaries, tilt and twist boundaries, twin boundaries, stacking faults – volume defects – effect of imperfections.
UNIT-II	MATERIAL DEFORMATION: Introduction – elastic behavior of materials – atomic model of elastic behavior –modulus as a parameter in design – rubber like elasticity – inelastic behavior of materials – relaxation process – viscoelastic behavior of materials – spring-Dash pot models of viscoelastic behavior of materials.
UNIT-III	PERMANENT DEFORMATION AND STRENGTHENING METHODS OF MATERIALS: Introduction –plastic deformation: tensile stress-strain curve – plastic deformation by slip – creep: mechanism of creep – creep resistant materials – strengthening

	methods: strain hardening, grain refinement – solid solution strengthening – precipitation strengthening.						
UNIT-IV	OPTICAL MATERIALS: Introduction – optical absorption in metals, semiconductors and insulators – NLO materials and their applications – display devices and display materials: fluorescence and phosphorescence – light emitting diodes –liquid crystal displays.						
UNIT-V	MECHANICAL TESTING: Destructive testing: tensile test, compression test, hardness test – nondestructive testing (NDT): radiographic methods, ultrasonic methods – thermal methods of NDT: thermography – equipment used for NDT: metallurgical microscope						
TEXT BOOKS	 Material science and Engineering, Raghavan V, Prentice Hall of India, Sixth Edition, 2015 Materials science, V. Rajendran, McGraw Hill publications 2011 						
REFERENCE BOOKS	 William D. Callister, Jr., Material Science and Engineering – An Introduction, 8th Edition, John Wiley and Sons, Inc., 2007 W. Bolton, "Engineering materials technology", 3rd Edition, Butterworth and Heinemann, 2001. Donald R. Askeland, Pradeep P. Phule, "The Science and Engineering of Materials", 5th Edition, Thomson Learning, First Indian Reprint, 2007. William F. Smith, "Structure and Properties of Engineering Alloys", Mc-Graw-Hill Inc., U.S.A, 2nd edition, 1993. 						

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explore the different crystal imperfections
COURSE	CO2	Learn about different material deformation
OUTCOMES	CO3	Can acquire knowledge about plastic deformation
	CO4	Explore the fundamentals of optical materials
	Can acquire knowledge about nondestructive testing.	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S

	S	S	S	S	М	S	М	М	М
(() 5	S	М	М	S			М	М	S

COURSE	FOURTH SEMESTER – CORE THEORY 4
COURSE TITLE	OPTICS AND LASER PHYSICS
CREDITS	6
COURSE OBJECTIVES	To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics; To explain the behaviour of light in different mediums; To understand the differences in the important phenomena namely interference, diffraction and Polarization and apply the knowledge in day-to-day life; To understand the design of optical systems and methods to minims aberrations; To understand the working and applications of laser

UNITS	COURSE DETAILS
	LENS AND PRISMS: Fermat's principle of least time – postulates
	of geometrical optics – thick and thin lenses – focal length, critical thickness, power and cardinal points of a thick lens – narrow angled prisms.
	<i>Lens:</i> aberrations: spherical aberration, chromatic aberrations, coma, and astigmatism– curvature of the field – distortion – chromatic aberrations methods.
UNIT-I	<i>Prism</i> : dispersion, deviation, aberrations - applications rainbows and halos, constant deviation spectroscope.
	<i>Eyepieces</i> : advantage of an eyepiece over a simple lens – Huygen's and Ramsden's eyepieces, construction and working –merits and demerits of the eyepiece.
	Resolving power: Rayleigh's criterion for resolution – limit of resolution for the eye – resolving power of, (i) Prism (ii) grating (iii) telescope.
UNIT-II	INTERFERENCE: division of wave front, Fresnel's biprism – fringes with white light – division of amplitude: interference in thin films due to, (i) reflected light, (ii) transmitted light – colours of thin films applications – air wedge – Newton's rings. <i>Interferometers</i> : Michelson's interferometer – applications, (i)
	determination of the wavelength of a monochromatic source of light, (ii) determination of the wavelength and separation D_1 and D_2 lines of sodium light, (iii) determination of a thickness of a mica sheet.
	DIFFRACTION: Fresnel's assumptions – zone plate – action of zone
UNIT-III	plate for an incident spherical wave front – differences between a zone plate and a convex lens –Fresnel type of diffraction – diffraction pattern due to a straight edge – positions of maximum and minimum intensities – diffraction due to a narrow slit –Fraunhofer type of diffraction – Fraunhofer diffraction at a single slit – plane diffraction grating– experiment to determine wavelengths – width of principal maxima.
UNIT-IV	POLARISATION: optical activity – optically active crystals – polarizer and analyser–double refraction – optic axis, principal plane – Huygens's explanation of double refraction in uniaxial crystals –

	polaroids and applications – circularly and elliptically polarized light
	-quarter wave plate – half wave plate – production and detection of
	circularly and elliptically polarized lights - Fresnel's explanation -
	specific rotation - Laurent half shade polarimeter- experiment to
	determine specific rotatory power.
	LASERS: general principles of lasers – properties of lasers action –
UNIT-V	spontaneous and stimulated emission – population inversion – optical
UNII-V	pumping – He-Ne laser (principle and working) – CO_2 laser (principle
	and working) semiconductor laser – laser applications – holography.
	PROFESSIONAL COMPONENTS: Expert lectures –seminars –
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	1. Subramaniam. N and Brij Lal, 2014, Optics, 25 th Ed, S. Chand and
	Co.
TEXT BOOKS	2. P. R. Sasikumar, 2012, Photonics, PHI Pvt Ltd, New Delhi.
	3. V. Rajendran, 2012, Engineering Physics, Tata McGraw Hill.
	1. Sathyaprakash, 1990, Optics, VII edition, Ratan Prakashan
	Mandhir, New Delhi.
REFERENCE	2. Ajoy Ghatak, 2009, Optics, 4 th edition, PHI Pvt Ltd, New Delhi.
BOOKS	3. D. Halliday, R. Resnick and J. Walker, 2001, Fundamentals of
DUUKS	Physics, 6 th edition, Willey, New York.
	4. Jenkins A. Francis and White, 2011, Fundamentals of Optics, 4th
	edition, McGraw Hill Inc., New Delhi.
	1. <u>https://science.nasa.gov/ems/</u>
	2. https://www.youtube.com/watch?v=tL3rNc1G0qQandlist=RDCM
	UCzwo7UlGkb-8Pr6svxWo-LAandstart_radio=1andt=2472
WEB	3. https://science.nasa.gov/ems/
RESOURCES	4. <u>https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/</u>
RESUURCES	
	index.html 5 http://www.ike.nie.org/2014/02/22/siles.html.ie.de
	5. <u>http://www.thephysicsmill.com/2014/03/23/sky-blue-lord-</u>
	rayleigh-sir-raman-scattering/

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Dutline basic knowledge of methods of rectifying different defects n lenses, articulate technological applications of eyepieces						
COURSE OUTCOMES	CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer						
	CO3	Extend the knowledge about nature of light through diffraction techniques; apply mathematical principles to analyse the optical instruments						

	Interpret basic formulation of polarization and gain knowledge about polarimeter, appraise its usage in industries
CO5	Relate the principles of optics to various fields of IR, Raman and
	UV spectroscopy and understand their instrumentation and
	application in industries

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	М	М	М	S	S	М	М
CO2	М	S	М	S	М	S	М	М	S	S
CO3	S	М	S	S	S	М	S	S	М	М
CO4	S	М	S	М	М	S	М	М	S	М
CO5	S	М	S	М	S	S	М	S	S	S

COURSE	FOURTH SEMESTER - CORE PRACTICAL 4				
COURSETITLE	PRACTICAL 4				
CREDITS	2				
COURSE	Demonstrate various optical phenomena principles, working, apply with				
OBJECTIVES	various materials and interpret the results.				
LIGHT (any eight experiments)					

Minimum of Eight Experiments from the list:

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of Cauchy's Constants.
- 7. Determination of resolving power of grating
- 8. Determination of resolving power of telescope
- 9. Comparison of intensities using Lummer Brodhum Photometer.
- 10. Determination of range of motion using Searles goniometer.
- 11. Verification of Newton's formula for a lens separated by a distance.
- 12. Determination of refractive index of a given liquid by forming liquid lens
- 13. Determination of refractive index using Laser.
- 14. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 15. Determination of resolving power of Diffraction grating using Laser
- 16. Determination of wire using Laser.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FOURTH SEMESTER - SKILL ENHANCEMENT COURSE -SEC-6
COURSE TITLE	MEDICAL PHYSICS
CREDITS	2
Course Objective: 7	To understand the basics about the biological systems in our body, their
behavior, and the dia	gnostic devices.
UNITS	COURSE DETAILS
UNIT-I	Basic Anatomical Terminology- Standard anatomical position, Planes, Familiarity with terms like – Superior, Inferior, Anterior, Posterior, Medial, Lateral, Proximal, Distal. Forces on and in the Body – Physics of the Skeleton – Heat and Cold in Medicine- Energy work and Power of the Body
UNIT-II	Pressure system of the body- Physics of Cardiovascular system- Electricity within the Body – Applications of Electricity and Magnetism in Medicine. Sound in medicine - Physics of the Ear and Hearing- Light in medicine- Physics of eyes and vision.
UNIT-III	Transducers- performance of characteristics of transducer- static and dynamic active transducers – (a) magnetic induction type (b) piezoelectric type (c) photovoltaic type (d) thermoelectric type. Passive transducer- (a) resistive type – effect and sensitivity of the bridge (b) capacitive transducer (c) linear variable differential transducer (LVDT)
UNIT-IV	X-rays- Production of X-rays- X-ray spectra- continues spectra and characteristic spectra- Coolidge tube- Electro Cardio Graph (ECG) - Block diagram- ECG Leads- Unipolar and bipolar-ECG recording set up.
UNIT-V	Electro Encephalo Graph (EEG) - origin- Block diagram- Electro Myogragh (EMG) – Block diagram- EMG recorder- Computer Tomography (CT) principle- Block diagram of CT scanner.
TEXT BOOKS	 Medical Physics –John R. Cameron and James G. Skofronick, 1978, John Willy & Sons. Bio medical instrumentation – E D II, Dr M. Arumugam, Anuradha Agencies 1997.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Understand the basic anatomical terminology of body				
COURSE	CO2	Gain the sufficient knowledge on the pressure system of the body				
OUTCOMES	CO3	Have an idea about transducers				
	CO4	Be familiar with X-rays and its applications				
	CO5	Know the details about EEG, EMG and CT scanner				

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	Μ	S	М	S	М	Μ	S	Μ	Μ	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	FOURTH SEMESTER - SKILL ENHANCEMENT COURSE -
	SEC-6
COURSE TITLE	PHYSICS OF MUSIC
CREDITS	2
•	e: To apprise and train students on the role of Physics in music and get the
knowledge on the	musical notes and instruments.
UNITS	COURSE DETAILS
UNIT-I	SCIENTIFIC STUDY OF MUSIC: vibrations of atoms of matter– vibrations coupling to air – propagation of sound waves in air, other media, fluids and solids – velocity, frequency, wavelength, time period, intensity: definition and unit fs – classification of sound on frequency and velocity– human and animal sound perception– mechanism of ear and hearing – psychoacoustics
UNIT-II	SIMPLE VIBRATING SYSTEMS: simple harmonic motion – tuning fork– amplitude, phase, energy, energy loss/damping/ dissipation – power – travelling waves and standing waves– laws of vibration in stretched strings– one-dimensional medium – open and closed organ pipes – over tones, harmonics – quality of sound: pitch, timber, loudness – octaves, musical notes
UNIT-III	MUSICAL TONE: pure/simple tones – sine/cosine waves– well- defined frequencies, wavelengths, amplitudes and phases– partial tones – assembly of pure tones– mix of different frequencies and amplitudes– complex tone – superposition of simple tones – complex waveform– periodic complex waveform – formants – resonances– sound envelope

								
	PRODUCTION OF MUSICAL SOUNDS: human voice, mechanism							
	of vocal sound production – larynx (sound box) –							
	stringed Instruments: plucked and bowed, guitar, mandolin, violin,							
UNIT-IV	piano, etc wind instruments: whistles, flute, saxophone, pipe organ							
	bagpipes, etc - percussion instruments: plates, membranes, drums,							
	cymbals, xylophone etc <i>electronic instruments</i> : keyboards, electric							
	guitars, rhythm pads, etc analog and digital sound synthesizers, -							
	MIDI instrument– computer generated music							
	RECORDING OF MUSIC and SOUND: Edison phonograph -							
	cylinder and disk records – magnetic wire and tape recorders – digital							
	recording (e.g. to CD, DVD, etc.)- analog transducers, condenser,							
UNIT-V	dynamic microphones, loudspeaker – complex sound fields – near and							
	far fields of acoustic- spectral analysis techniques - continuous and							
	discrete Fourier transforms, digital signal processing – digital filtering –							
	specifications of recording studios							
	1. Physics and Music: The Science of Musical Sound by Harvey							
	White (2014)							
ΤΕΥΤ ΒΟΟΖΩ	2. Good Vibrations – The Physics of Music by Barry Parker, (2009)							
TEXT BOOKS	3. The History of Musical Instruments by Curt Sachs, (2006)							
	4. Physics and Music: Essential Connections and Illuminating							
	Excursions by Kinko Tsuji and Stefan C. Müller (2021)							
N								

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	To familiarize the sound concept and its applications.
COURSE	CO2	Understand the concept of simple harmonic motion and its applications by the mathematical expressions
OUTCOMES	CO3	Students can understand the different musical tones
OUTCOMES	CO4	Students can learn about different musical sound production instruments
	CO5	Distinguish different types of recording of music and sound

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	FIFTH SEMESTER – CORE THEORY 5
COURSETITLE	ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM
CREDITS	4
COURSE	To classify materials based on their electrical and magnetic
OBJECTIVES	properties. To analyse the working principles of electrical gadgets.
	To understand the behaviour of dc, ac and transient currents. To
	know about the communication by electromagnetic waves.

UNITS	COURSE DETAILS
	CAPACITORS AND THERMO ELECTRICITY: Capacitor –
	principle – capacitance of spherical and cylindrical capacitors –
	capacitance of a parallel plate capacitor (with and without dielectric
UNIT-I	slab) – effect of dielectric –Carey Foster bridge – temperature
UNII-I	coefficient of resistance - Seebeck effect - laws of thermo emf -
	Peltier effect - Thomson effect - thermoelectric diagrams -uses of
	thermoelectric diagrams - thermodynamics of thermo couple -
	determination of Peltier and Thomson coefficients.
	MAGNETIC EFFECTS OF CURRENT: Biot and Savart's law –
	magnetic induction due to circular coil – magnetic induction due to
	solenoid – Helmholtz tangent galvanometer –force on a current
	element by magnetic field – force between two infinitely long
UNIT-II	conductors - torque on a current loop in a field - moving coil
	galvanometer – damping correction – Ampere's circuital law –
	differential form – divergence of magnetic field – magnetic induction
	due to toroid.
	MAGNETISM AND ELCTROMAGNETIC INDUCTION:
	Magnetic induction B – magnetization M - relation between B, H and
	M – magnetic susceptibility – magnetic permeability – experiment to
	draw B-H curve – energy loss due to hysteresis - Importance of
TINIT'S TIT	hysteresis curves - Faraday and Lenz laws -vector form - self-
UNIT-III	induction – coefficient of self-inductance of solenoid – Anderson's
	method – mutual induction – coefficient of mutual inductance
	between two coaxial solenoids - coefficient of coupling - earth
	inductor- determination of angle of $dip(\Phi)$
	TRANSIENT AND ALTERNATING CURRENTS: Growth and
	decay of current in a circuit containing resistance and inductance –
UNIT-IV	growth and decay of charge in a circuit containing resistance and
0111-11	capacitor – growth and decay of charge in an LCR circuit (expressions
	for charge only) – peak, average and rms values of ac – LCR series
	and parallel circuits – resonance condition – Q factor – power factor.
	MAXWELLS EQUATIONS AND ELECTROMAGNETIC
	WAVES: Maxwell's equations in vacuum, material media– physical
UNIT-V	significance of Maxwell's equations –displacement current – plane
0111-1	electromagnetic waves in free space – velocity of light – Poynting
	vector-electromagnetic waves in a linear homogenous media -
	refractive index.
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars —
	webinars – industry inputs – social accountability – patriotism

TEXT BOOKS	 Murugeshan. R., - Electricity and Magnetism, 8th Edn, 2006, S. Chand and Co, New Delhi.\ Sehgal D. L., Chopra K. L, Sehgal N. K., - Electricity and Magnetism, Sultan Chand and Sons, New Delhi. M. Narayanamurthy and N. Nagarathnam, Electricity and
	Magnetism, 4th Edition. National Publishing Co., Meerut.
REFERENCE BOOKS	 Brij Lal and Subramanian, Electricity and Magnetism, 6th Edn., Ratan and Prakash, Agra. Brij Lal, N. Subramanyan and Jivan Seshan, Mechanics and Electrodynamics (2005), Eurasia Publishing House (Pvt.) Ltd., New Delhi. David J. Griffiths, Introduction to Electrodynamics, 2ndEdn. 1997, Prentice Hall of India Pvt. Ltd., New Delhi D. Halliday, R. Resnik and J. Walker - Fundamentals of Physics, 6thEdn., Wiley, NY, 2001.
WEB RESOURCES	 <u>https://www.edx.org/course/electricity</u> <u>https://www.udemy.com/courses/</u> electricity <u>https://www.edx.org/course/magnetism</u> <u>http://www.hajim.rochester.edu/optics/undergraduate/courses.html</u>

25 75 100	Continuous Internal Assessment	End Semester Examination	Total	Grade
	25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Describe various thermo-electric effects and their properties.
COURSE	CO2	Apply Biot and Savart law to study the magnetic effect of electric current.
	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.
OUTCOMES	CO4	Analyze the time variation of current and potential difference in AC circuits.
	CO5	Relate different physical quantities used to explain magnetic properties of materials.

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

COURSE	FIFTH SEMESTER – CORE THEORY 6
COURSE TITLE	ATOMIC AND NUCLEAR PHYSICS
CREDITS	4
COURSE OBJECTIVES	To make students understand the development of atom models, quantum numbers, coupling schemes and analysis of magnetic moments of an electron; To gain knowledge on excitation and ionization potentials, splitting of spectral lines in magnetic and electric fields; To get knowledge on radioactive decay; To know the concepts used in nuclear reaction; to understand the quark model of classification of elementary particles.
UNITS	COURSE DETAILS
UNIT-I	VECTOR ATOM MODEL: introduction to atom model – vector atom model – electron spin –spatial quantization– quantum numbers associated with vector atom model – L-S and J-J coupling – Pauli's exclusion principle – magnetic dipole moment due to orbital motion and spin motion of the electron – Bohr magnetron – Stern-Gerlach experiment – selection rules – intensity rule.
UNIT-II	ATOMIC SPECTRA: origin of atomic spectra – excitation and ionization potentials – Davis and Goucher's method – spectral terms and notations – fine structure of sodium D-lines – Zeeman effect – Larmor's theorem – quantum mechanical explanation of normal Zeeman effect – anomalous Zeeman effect (qualitative explanation) –Paschen-Back effect – Stark effect.
UNIT-III	RADIOACTIVITY: discovery of radioactivity – natural radio activity – properties of alpha rays, beta rays and gamma rays – Geiger-Nuttal law – alpha particle spectra – Gamow's theory of alpha decay (qualitative study) – beta ray spectra – neutrino theory of beta decay – nuclear isomerism – internal conversion – non- conservation of parity in weak interactions.
UNIT-IV	NUCLEAR REACTIONS: conservation laws of nuclear reaction – Q-value equation for a nuclear reaction – threshold energy – scattering cross section – artificial radio activity – application of radio isotopes – classification of neutrons – models of nuclear structure – liquid drop model – shell model.
UNIT-V	ELEMENTARY PARTICLES: classification of elementary particles – fundamental interactions – elementary particle quantum numbers –i Isospin and strangeness quantum number – Conservation laws and symmetry – quarks – quark model (elementary ideas only) – discovery of cosmic rays – primary and secondary cosmic rays – latitude effect– altitude effect.
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars – – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R. Murugesan, Modern Physics, S. Chand and Co. (All units) (Units I and II-Problems) Brij Lal and N. Subrahmanyam, Atomic and Nuclear Physics, S. Chand and Co. (All units) J. B. Rajam, Modern Physics, S. Chand and Co. Sehgal and Chopra, Modern Physics, Sultan Chand, New Delhi

	5. Arthur Beiser - Concept of Modern Physics, McGraw Hill					
	Publication, 6 th Edition.					
	1. Perspective of Modern Physics, Arthur Beiser, McGraw Hill.					
	2. Modern Physics, S. Ramamoorthy, National Publishing and Co.					
	3. Laser and Non-Linear Optics by B. B. Laud, Wiley Easter Ltd.,					
	New York,1985.					
REFERENCE	4. Tayal, D. C. 2000 – Nuclear Physics, Edition, Himalaya Publishing					
BOOKS	House, Mumbai.					
	5. Irving Kaplan (1962) Nuclear Physics, Second Edition, Oxford and					
	IBH Publish and Co, New Delhi.					
	6. J. B. Rajam– Atomic Physics, S. Chand Publication, 7 th Edition.					
	7. Roy and Nigam, – Nuclear Physics (1967) First edition, Wiley					
	Eastern Limited, New Delhi.					
	1. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html					
	2. <u>https://makingphysicsfun.files.wordpress.com/2015/01/photoelect</u>					
WED	<u>ric-effect.pptx</u>					
WEB RESOURCES	3. https://www.khanacademy.org/science/physics/quantum-					
	physics/in-in-nuclei/v/types-of-decay					
	4. https://www.khanacademy.org/science/in-in-class-12th-physics-					
	india/nuclei					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	List the properties of electrons and positive rays, define specific						
		charge of positive rays and know about different mass spectrographs.						
COURSE OUTCOMES	CO2 CO3	Outline photoelectric effect and the terms related to it, Stat laws of photoelectric emission, explain experiments an applications of photo electric effect, solve problems based of photoelectric equation. Explain different atom models, Describe different quantum numbers and different coupling schemes.						
	CO4	Differentiate between excitation and ionization potentials, Explain Davis and Goucher's experiment, apply selection rule, Analyze Paschen-Back effect, Compare Zeeman and Stark effect.						
	CO5	Understand the condition for production of laser, Appreciate various properties and applications of lasers.						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	М	S	М	Μ	М
CO5	S	М	S	S	М	S	S	М	М	S

COURSE	FIFTH SEMESTER – CORE THEORY 7
COURSE TITLE	ANALOG AND COMMUNICATION ELECTRONICS
CREDITS	4
COURSE OBJECTIVES	To study the design, working and applications of semiconducting devices. To construct various electronic circuits. To study them in details. To study the basis of audio and video communication systems and the aspects of satellite and Fibre Optic Communications.

UNITS	COURSE DETAILS
UNIT-I	DIODES: diode characteristics – rectifiers - clipper circuits, clamping circuits. half wave rectifier, center tapped and bridge full wave rectifiers, calculation of efficiency and ripple factor. DC power supply: Block diagram of a power supply, qualitative description of shunt capacitor filter, Zener diode as voltage regulator, temperature coefficient of Zener diode.
UNIT-II	TRANSISTOR AMPLIFIERS: Transistor configurations: CB, CE CC modes – I-V characteristics and hybrid parameters – DC load line – Q point self-bias – RC coupled CE amplifier –power amplifiers – classification of power amplifiers: A, B, C – push pull amplifiers – tuned amplifiers.
UNIT-III	TRANSISTOR OSCILLATORS: feedback amplifier - principle of feedback, positive and negative feedback of voltage and current gain, advantages of negative feedback - Barkhausen's criterion. Transistor oscillators: Hartely, Colpitt, Phase shift oscillators with mathematical analysis.
UNIT-IV	OPERATIONAL AMPLIFIERS: differential amplifiers – OPAMP characteristics –IC 741 pin configuration – inverting and non-inverting amplifiers – unity follower –summing and difference amplifiers – differentiator and integrator – astable multivibrator (square wave generator) – monostable vibrator
UNIT-V	MODULATION AND DEMODULATION theory of amplitude modulation - frequency modulation – comparison of AM and FM – phase modulation – sampling theorem – pulse width modulation –

	pulse modulation systems: PAM, PPM, and PCM – demodulation:					
	AM and FM detection - duper heterodyne receiver (block diagram)					
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures -seminars -					
UNII-VI	- webinars - industry inputs - social accountability - patriotism					
	1. V. K. Mehta - Principles of Electronics, S. Chand and Co. Ltd.,					
	2004.					
	2. V. Vijayendran - Integrated Electronics, S. Vishwanathan					
TEXT BOOKS	Publishers, Chennai.					
	3. B.L. Theraja - A Text Book of Electrical Technology.					
	. John D. Ryder - Electronic fundamentals and Applications.					
	5. Malvino - Electronic Principles, Tata McGraw Hill.					
	1. B. Grob - Basic Electronics, 6 th edition, McGraw Hill, NY, 1989.					
	2. Herbert Taub and Donald schilling - Digital Integrated					
REFERENCE	Electronics, McGraw Hill, NY.					
BOOKS	3. Ramakant A. – Op amp principles and linear integrated circuits,					
200110	Gaykward					
	4. Bagde and S. P. Singh - Elements of Electronics.					
	5. Millman and Halkias- Integrated Electronics, Tata McGraw Hill.					
	1. https://www.queenmaryscollege.edu.in/eresources/undergraduat					
	eprogram/py157					
WEB	2. www.ocw.mit.edu>> Circuits and Electronics					
RESOURCES	3. www.ocw.mit.edu>> Introductory Analog Electronics					
RESOURCES	Laboratory					
	4. https:// www.elprocus.com> semiconductor devices					
	5. https:// www.britannica.com>technology					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explain the basic concepts of semiconductors devices.								
	CO2	know and classify the basic principles of biasing and transistor								
COURSE		amplifiers								
OUTCOMES	CO3	Acquire the fundamental concepts of oscillators.								
OUTCOMES	CO4	Understand the working of operational amplifiers								
	CO5	Learn and analyze the operations of sequential and								
		combinational digital circuits								

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	L	S	S	L	S	S	S
CO4	М	S	S	S	S	S	S	М	L	М
CO5	S	М	S	S	М	М	S	М	М	S

COURSE	FIFTH SEMESTER – CORE PRACTICAL 5
COURSE TITLE	PRACTICAL 5
CREDITS	2
COURSE	Demonstrate various optical phenomena principles, working, apply with
OBJECTIVES	various materials and interpret the results.
GENERAL	

Minimum of Eight Experiments from the list:

- 1. Diffraction grating Normal incidence.
- 2. Diffraction grating minimum deviation.
- 3. Diffraction at a wire.
- 4. Specific rotation of sugar solution.
- 5. Bi-prism Determination of \Box .
- 6. Thickness of a thin film of Bi-prism
- 7. Brewster's law polarization
- 8. Double refraction (\Box e and \Box o)
- 9. Y by Corlus method.
- 10. Dispersive power of plane diffraction grating.
- 11. Diffraction a straight edge.
- 12. Kundt's tube Velocity of sound, Adiabatic Young's modulus of the material of the rod.
- 13. Forbe's method Thermal conductivity of a metal rod.
- 14. Spectrometer- Grating Normal incidence Wave length of Mercury spectral lines.
- 15. Spectrometer Grating Minimum deviation Wave length of Mercury spectral lines.
- 16. Spectrometer (i-d) curve.
- 17. Spectrometer (i-i') curve.
- 18. Spectrometer Narrow angled prism.
- 19. Rydberg's constant
- 20. e/m Thomson method
- 21. h by photocell
- 22. Spectral response of photo conductor (LDR).
- 23. Potentiometer –Resistance and Specific resistance of the coil.
- 24. Potentiometer E.M.F of a thermocouple.
- 25. Carey Foster's bridge Temperature coefficient of resistance of the coil.
- 26. Deflection Magnetometer Determination of Magnetic moment of a bar magnet and B_Husing circular coil carrying current.
- 27. Vibration magnetometer Determination of B_H using circular coil carrying current– Tan B position.
- 28. B.G Figure of Merit Charge Sensitivity

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIFTH SEMESTER - ELECTIVE COURSE 1
COURSE TITLE	MATHEMATICAL PHYSICS
CREDITS	4
Course Objective:	To understand higher mathematical concepts which are applied to solve
problems in Physics	s and similar situations
UNITS	COURSE DETAILS
UNIT-I	MATRICES: Types of matrices – symmetric, Hermitian, unitary and orthogonal matrices– characteristic equation of a matrix – Eigen values and Eigen vectors of a matrix – Cayley-Hamilton theorem – inverse of matrix by Cayley-Hamilton theorem – similarity transformations – diagonalization of 2x2 real symmetric matrices.
UNIT-II	VECTOR CALCULUS: Vector differentiation – directional derivatives –definitions and Physical significance of gradient, divergence, curl – Laplace operators– vector identities – line, surface and volume integrals – statement, proof and simple problems for Gauss's divergence theorem, Stoke's theorem, Green's theorem.
UNIT-III	ORTHOGONAL CURVILINEAR COORDINATES: Tangent basis vectors – scale factors – unit vectors in cylindrical and spherical coordinate systems –gradient of a scalar –divergence and curl of a vector – Laplacian in these coordinate systems.
UNIT-IV	 FOURIER SERIES: Periodic functions –Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of square wave, saw-tooth wave, half wave/full wave rectifier wave forms. FOURIER TRANSFORMS: Fourier Integral theorem (Statement only)–Fourier, Fourier sine and Fourier cosine transforms – Fourier transform of single pulse – trigonometric, exponential and Gaussian functions – inverse Fourier transform – convolution theorem.
UNIT-V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) –one dimensional heat flow equation – solutions to these PDE's by method of separation of variables – problems based on boundary conditions and initial conditions.
TEXT BOOKS	 Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India. Mathematical Physics – P. K. Chattopadhyay, New Age International Publishers. Mathematical Physics – B. D. Gupta. Mathematical Physics – H. K. Das, S. Chand and Co, New Delhi.

	1. Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
	2. Engineering Mathematics III- B, M. K. Venkataraman,
REFERENCE	3. Applied Mathematics for Scientists and Engineers, Bruce R. Kusse
BOOKS	and Erik A. Westwig, 2 nd Ed, WILEY-VCH Verlag, 2006.
	4. Vector space and Matrices – J. C. Jain, Narosa Publishing House
	Pvt. Ltd.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Use matrices to solve simultaneous equations							
	CO2	Can acquire good knowledge of the basic elements and important theorems of vector							
COURSE OUTCOMES	CO3	Can acquire knowledge of the orthogonal curvilinear coordinates							
	CO4	Apply Fourier series to simple circuits							
	CO5	Students can learn about applications of partial differential equations.							

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	FIFTH SEMESTER - ELECTIVE COURSE 2
COURSE TITLE	NANOSCIENCE AND NANO TECHNOLOGY
CREDITS	4
Course Objective:	This course aims to provide an overall understanding of Nanoscience
	y and introduces different types of nanomaterials, their properties,
	s, characterization techniques and a range of applications.
UNITS	COURSE DETAILS
	NANOSCIENCE AND NANOTECHNOLOGY: Nanoscale–
UNIT-I	nature and nanostructures – nanostructures: 0D, 1D,2D– surface to volume ratio– size effect – excitons – quantum confinement– metal based nanoparticles (metal and metal oxide) – nanocomposites (non-polymer based) – carbon nanostructures – fullerene –SWCNT and
	MWCNT
	PROPERTIES OF NANOMATERIALS: Introduction – mechanical
UNIT-II	behavior –elastic properties – hardness and strength – ductility and toughness –superplastic behavior – optical properties – surface plasmon resonance – electrical properties – dielectric materials and properties – magnetic properties – super paramagnetism – electrochemical properties – properties of CNTs.
	FABRICATION METHODS AND VACUUM TECHNIQUES:
UNIT-III	Top-down and bottom-up approaches – electrochemical method – chemical and physical vapour depositions (CVD and PVD) – plasma arc discharge – sputtering – thermal evaporation – pulsed laser deposition – ball milling – lithography: photolithography – e-beam lithography – sol-gel methods – synthesis of CNT.
	CHARACTERIZATION TECHNIQUES: Scanning probe
UNIT-IV	microscopy – scanning tunneling microscopy – atomic force microscopy – scanning electron microscopy – transmission electron microscopy –powder XRD method: determination of structure and grain size analysis – UV-visible and photoluminescence spectroscopy.
	APPLICATIONS OF NANOMATERIALS: Medicine: drug
UNIT-V	delivery – photodynamic therapy – molecular motors –energy: fuel cells –rechargeable batteries – supercapacitors– photovoltaics. sensors: nano sensors based on optical and physical properties – electrochemical sensors – nano biosensors. nanoelectronics: CNTFET – display screens – GMR read/write heads – nanorobots –applications of CNTs
TEXT BOOKS	 K. K. Chattopadhyay and A. N. Banerjee, (2012), Introduction to Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd., M.A. Shah, Tokeer Ahmad (2010), Principles of Nanoscience and Nanotechnology, Narosa Publishing House Pvt Ltd. Mick Wilson, et al (2005) Nanotechnology, Overseas Press.
REFERENCE BOOKS	 Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA J. H. Fendler (2007) Nano particles and nano structured films; Preparation, Characterization and Applications, John Wiley and Sons B. S. Murty, et al (2012) Textbook of Nanoscience and Nanotechnology, Universities Press.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Gain the knowledge about nano science and nanotechnology
COURSE	CO2	Understand the properties of nano materials.
OUTCOMES	CO3	Gain the depth knowledge of characterization techniques
	CO4	Understand the different characterization techniques
	CO5	Students can learn about the applications of nanomaterials

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	S	S	S	S	Μ	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE THEORY 8
COURSETITLE	QUANTUM MECHANICS AND RELATIVITY
CREDITS	4
COURSE OBJECTIVES	To understand the theory of relativity, its postulates and the consequences. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity. To interpret the wave theory of matter with various theoretical and experimental evidences. To derive and use Schrodinger's wave equation and also learn about various operators. To solve Schrodinger's wave equation for simple problems and analyse to understand the solutions.

UNITS	COURSE DETAILS
UNIT-I	SPECIAL THEORY OF RELATIVITY: Michelson-Morley experiment–frames of reference – Galilean Relativity – postulates of special theory of relativity – Lorentz transformation – consequences – time dilation–concept of simultaneity – Doppler effect – length

	contraction-variation of mass with velocity - Einstein's mass-
	energy relation– relativistic momentum – energy relation
UNIT-II	TRANSFORMATION RELATIONS: Transformation ofvelocity, mass, energy and momentum – four vector – invarianceunder transformation – Lorentz transformation and velocity additionequations in terms of hyperbolic functions. GENERAL THEORY OF RELATIVITY: Inertial andGravitational mass – Principle of equivalence – Experimentalevidences for General theory of Relativity
	PHOTONS AND MATTER WAVES: Difficulties of classical
UNIT-III	physics and origin of quantum theory – black body radiation – Planck's law – Einstein's photoelectric equation – Compton effect – pair production – De Broglie waves – phase velocity and group velocity – Davisson and Germer's experiment – uncertainty principle – consequences – illustration of Gamma ray microscope.
	OPERATORS AND SCHRÖDINGER EQUATION: Postulates
UNIT-IV	of quantum mechanics – Wave function and its interpretation – Schrödinger 's equation – linear operators – Eigenvalue – Hermitian operator – properties of Hermitian operator– observable – operators for position, linear Momentum, angular momentum components – commutator algebra –commutator between these operators – expectation values of position and momentum –Ehrenfest theorem.
	SOLVING SCHRÖDINGER EQUATION FOR SIMPLE
UNIT-V	PROBLEMS: <i>one-dimensional problems</i> : (i) particle in a box, (ii) barrier penetration problem – quantum mechanical tunneling, (iii) linear harmonic oscillator. <i>higher dimensional problems</i> : (i) Rigid rotator (qualitative), (ii) Hydrogen atom (qualitative).
	PROFESSIONAL COMPONENTS: Expert lectures –seminars –
UNIT-VI	- webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 Webinars – Industry Inputs – social accountability – patronsm Modern Physics, R. Murugeshan, Kiruthiga Sivaprasath, S. Chand and Co.,17th Revised Edition, 2014. Concepts of Modern Physics, A. Beiser, 6th Ed., McGraw-Hill, 2003. Special Theory of Relativity, S. P. Puri, Pearson Education, India, 2013. Quantum Mechanics, Ghatak and Loganathan, Macmillan Publications. Quantum mechanics – Satyaprakash and Swati Saluja. KedarNath Ram Nath and Co.
 	1. Fundamentals of Modern Physics, Peter J. Nolan, 1 st Edition,
REFERENCE BOOKS	 Pundamentals of Modelin Physics, Peter S. Rolan, P. Editon, 2014, by Physics Quantum Mechanics, V. Devanathan, Narosa Pub. House, Chennai, 2005. Quantum Mechanics, V.K. Thangappan, New Age
BOOKS	 J. Quantum Mechanics, V.K. Thangappan, New Age International, New Delhi. 4. A Text Book of Quantum Mechanics, Mathews and Venkatesan, Tata McGraw Hill, New Delhi.

	5.	Introduction to Quantum Mechanics, Pauling and Wilson, McGraw Hill Co., New York.
WEB RESOURCES	1. 2. 3. 4.	http://hyperphysics.phy-astr.gsu.edu/hbase/qapp.html https://swayam.gov.in/nd2_arp19_ap83/preview https://swayam.gov.in/nd1_noc20_ph05/preview https://www.khanacademy.org/science/physics/special- relativity/minkowski-spacetime/v/introduction-to-special- relativity-and-minkowski-spacetime-diagrams

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.							
COURSE	CO2	Appreciate the importance of transformation equations and also the general theory of relativity.							
OUTCOMES	CO3	Realise the wave nature of matter and understand its importance							
OUTCOMES	CO4	Derive Schrodinger equation and also realize the use of operators.							
	CO5	Apply Schrödinger equation to simple problems.							

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE THEORY 9
COURSE TITLE	SOLID STATE PHYSICS
CREDITS	4
COURSE	To understand constituents, properties and models of nucleus.
OBJECTIVES	To give reason for radioactivity and study their properties. To learn
	about the principles of various particle detectors and accelerators.
	To acquire knowledge on different types of nuclear reactions and their
	applications. To know the reason for cosmic rays and their effect on
	the surface of earth and also understand the classification of
	elementary particles.
UNITS	COURSE DETAILS
	BONDING IN SOLIDS, CRYSTAL STRUCTURE: Types of bonding –ionic bonding – bond energy of NaCl molecule –covalent
	bonding – metallic bonding – hydrogen bonding – Van-der-Waals
	bonding – crystal lattice – lattice translational vectors – lattice with
	basis – unit cell – Bravais' lattices – Miller indices – procedure for
UNIT-I	finding them –packing of BCC and FCC structures – structures of
	NaCl and diamond crystals -reciprocal lattice - reciprocal lattice
	vectors - properties - reciprocal lattices to SC, BCC and FCC
	structures – Brillouin zones – X-rays – Bragg's law(simple problems)
	– experimental methods: Laue method, powder method and rotating
	crystal method ELEMENTARY LATTICE DYNAMICS: Lattice vibrations and
	phonons: linear monoatomic and diatomic chains. acoustical and
	optical phonons –qualitative description of the phonon spectrum in
	solids –Dulong and Petit's Law – Einstein and Debye theories of
UNIT-II	specific heat of solids – T ³ law (qualitative only)–properties of metals
	- classical free electron theory of metals (Drude-Lorentz) - Ohm's
	law – electrical and thermal conductivities – Weidemann-Franz' law
	-Sommerfeld's quantum free electron theory (qualitative only) -
	Einstein's theory of specific heat capacity. MAGNETIC PROPERTIES OF SOLIDS: Permeability,
	susceptibility, relation between them – classification of magnetic
	materials – properties of dia, para, ferro, ferri and anti-ferromagnetism
	-Langevin's theory of diamagnetism - Langevin's theory of
UNIT-III	paramagnetism – Curie-Weiss law – Weiss theory of ferromagnetism
	(qualitative only) – Heisenberg's quantum theory of ferromagnetism
	- domains - discussion of B-H curve -hysteresis and energy loss -
	soft and hard magnets – magnetic alloys.
	DIELECTRIC PROPERTIES OF MATERIALS: Polarization and
	electric susceptibility –local electric field of an atom – dielectric constant and polarisability – polarization processes: electronic
	polarization – calculation of polarisability – ionic, orientational and
UNIT-IV	space charge polarization –internal field –Clausius-Mosotti relation –
	frequency dependence of dielectric constant –dielectric loss – effect
	of temperature on dielectric constant - dielectric breakdown and its
	types - classical theory of electric polarisability -normal and
	anomalous dispersion - Cauchy and Sell Meir relations -Langevin-

	Debye equation – complex dielectric constant -optical phenomena.
	Application – plasma oscillations – plasma frequency –plasmons,
UNIT-V	FERROELECTRIC and SUPERCONDUCTING PROPERTIES OF MATERIALS: <i>ferroelectric effect</i> : Curie-Weiss Law – ferroelectric domains, P-E hysteresis loop – <i>elementary band theory:</i> Kronig-Penny model – band gap (no derivation) – conductor, semiconductor (P and N type) and insulator –conductivity of semiconductor – mobility – Hall effect – measurement of conductivity (four probe method) - Hall coefficient. <i>Superconductivity:</i> Experimental results –critical temperature – critical magnetic field – Meissner effect –type-I and type-II superconductors – London's equation and penetration depth – isotope effect – idea of BCS theory (no derivation)
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003). Solid state Physics, Rita John,1st edition, Tata McGraw Hill publishers (2014). Solid State Physics, R L Singhal, Kedarnath Ram Nath and Co., Meerut (2003) Elements of Solid-State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning Solid-state Physics, H. Ibach and H. Luth, 2009, Springer Elementary Solid-State Physics, 1/e M. Ali Omar, 1999, Pearson India Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House, ND
REFERENCE BOOKS	 Puri and Babber – Solid State Physics – S. Chand and Co. New Delhi. Kittel - Introduction to solid state physics, Wiley and Sons, 7th edition. Raghavan - Materials science and Engineering, PHI Azaroff - Introduction to solids, TMH S. O. Pillai - Solid State Physics, Narosa publication A. J. Dekker - Solid State Physics, McMillan India Ltd. Elements of Solid-State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
WEB RESOURCES	1. https://nptel.ac.in/courses/115106061/ 2. https://nptel.ac.in/courses/115106061/

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Classify the bonding and crystal structure also learn about the crystal structure analysis using X ray diffraction.
COURSE	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.
COURSE OUTCOMES	CO3	Give reason for classifying magnetic material on the basis of their behaviour.
	CO4	Comprehend the dielectric behavior of materials.
	CO5	Appreciate the ferroelectric and super conducting properties of materials.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE THEORY 10
COURSE TITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
CREDITS	4
COURSE	To learn all types of number systems, Boolean algebra and identities,
OBJECTIVES	digital circuits for addition and subtraction, flip-flops, registers,
	counters. To get the knowledge on fundamentals of 8085 architecture,
	instruction sets and simple programs.

UNITS	COURSE DETAILS
UNIT-I	Decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code conversions –complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's and 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates -universal logic gates

	(NAND and NOR)standard representation of logic functions (SOP
	and POS) – minimization techniques (Karnaugh map: 2, 3, 4 variables).
UNIT-II	Adders, half and full adder –subtractors, half and full subtractor – parallel binary adder – magnitude comparator – multiplexers (4:1) and demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3-line-to-8-line), BCD to seven segment decoders.
UNIT-III	flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers: - serial in serial out and parallel in and parallel out – counters asynchronous: -mod-8, mod-10, synchronous - 4-bit and ring counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND and NOR Gates, CMOS Inverter, Programmable Logic Devices – Programmable Logic Array (PLA), Programmable Array Logic (PAL).
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit and 16- Bit), subtraction (8-Bit and 16-Bit), multiplication (8- Bit), division (8- Bit) – largest and smallest number in an array – BCD to ASCII and ASCII to BCD.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) –programmable interval timers (8253) – keyboard and display (8279), DMA controller (8237).
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 M. Morris Mano, Digital Design, 3rd Edition, PHI, New Delhi. Ronald J. Tocci. Digital Systems-Principles and Applications, 6/e. PHI. New Delhi. 1999.(UNITS I to IV) S. Salivahana and S. Arivazhagan-Digital circuits and design Microprocessor Architecture, Programming and Applications with the 8085 – Penram International Publishing, Mumbai Ramesh S. Gaonakar Microcomputer Systems the 8086/8088 family – YU-Cheng Liu and GlenSA
REFERENCE BOOKS	 Herbert Taub and Donald Schilling. Digital Integrated Electronics. McGraw Hill. 1985. S. K. Bose. Digital Systems. 2/e. New Age International.1992. D. K. Anvekar and B. S. Sonade. Electronic Data Converters: Fundamentals and Applications. TMH.1994. Malvino and Leach. Digital Principles and Applications. TMG Hill Edition Microprocessors and Interfacing – Douglas V. Hall

	6. Microprocessor and Digital Systems – Douglas V. Hall
WEB RESOURCES	 <u>https://youtu.be/-paFaxtTCkI</u> <u>https://youtu.be/s1DSZEaCX_g</u>

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Learn about number systems, Boolean algebra, logical operation and logic gates
COURSE	CO2	Understand the working of adder, subtractors, multiplexers and demultiplexers.
OUTCOMES	CO3	Get knowledge on flip-flops and storage devices.
	CO4	Gain inputs on architecture of microprocessor 8085.
	CO5	Develop program writing skills on microprocessor 8085.

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – CORE PRACTICAL 6							
COURSE TITLE	PRACTICAL 6							
CREDITS	2							
COURSE	To perform basic experiments on characteristics of electronic devices							
OBJECTIVES	and then get into the applications such as amplifiers, oscillators,							
	counters, multivibrators. Perform fundamental experiments on							
	microprocessor 8085 and learn to write programs by themselves.							
Electronics								
Minimum of Ten	Experiments from the list:							
1. Zener diode -	voltage regulations							
	r using diodes							
3. Clipping and	clamping circuits using diodes.							
4. Characteristic	cs of a transistor – (CE mode)							

- 5. Characteristics of a transistor (CB mode).
- 6. RC coupled CE transistor amplifier single stage.
- 7. Transistor Emitter follower.
- 8. Colpitt's oscillator -transistor.
- 9. Hartley oscillator transistor.
- 10. Astable multivibrator transistor.
- 11. Bistable multivibrator transistor.
- 12. FET characteristics.
- 13. FET amplifier (common drain)
- 14. UJT -characteristics
- 15. AC circuits with L, C, R -Series resonance.
- 16. AC circuits with L, C, R Parallel resonance.
- 17. Operational amplifier inverting amplifier and summing.
- 18. Operational amplifier non-inverting amplifier and summing.
- 19. Operational amplifier differential amplifier
- 20. Operational amplifier differentiator and integrator.
- 21. Operational amplifier D/A converter by binary resistor method.
- 22. 5V, IC Regulated power supply.
- 23. Construction of seven segment display.
- 24. Study of gate ICs NOT, OR, AND, NOR, NAND, XOR, XNOR
- 25. Verification of De Morgan's theorem using ICs –NOT, OR, AND
- 26. NAND as universal building block.
- 27. NOR as universal building block.
- 28. Half adder / Half subtractor using basic logic gate ICs
- 29. Microprocessor 8085 addition (8 bit only)
- 30. Microprocessor 8085 subtraction (8 bit only)
- 31. Microprocessor 8085 multiplication (8 bit only)
- 32. Microprocessor 8085 division (8 bit only)
- 33. Microprocessor 8085 square (8 bit only)
- 34. Microprocessor 8085 square root (8 bit only)
- 35. Microprocessor 8085 largest/smallest of numbers (8 bit only)
- 36. Microprocessor 8085 -ascending/descending order
- 37. Microprocessor 8085 Fibonacci series

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SIXTH SEMESTER - ELECTIVE COURSE 3						
COURSE TITLE	MEDICAL INSTRUMENTATION						
CREDITS	4						
Course Objective:	Course Objective: This course aims to provide background of the Physics principles in						
medical instrumentation technologies through theoretical and practical learning.							
UNITS	COURSE DETAILS						

UNIT-I	BIOMETRICS: Introduction to man-instrument system and its components – problems encountered in measuring living systems – transducers– force, motion, pressure transducers. AUDIOMETRY: mechanism of hearing – air and bone conduction – threshold of hearing – audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids
UNIT-II	 BIOELECTRIC POTENTIALS AND ELECTRODES: Biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials –bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: Electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.
UNIT-III	 DIAGNOSTIC RADIOLOGY: Radiography – primary radiological image – contrast agents, filters – beam restrictor, grid – image quality COMPUTED TOMOGRAPHY: linear tomography – computed tomography – helical and multi slice – image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.
UNIT-IV	 ULTRASOUND IMAGING: Ultrasound transducer – ultrasound imaging– Doppler ultrasound – ultrasound image quality and bioeffects. MAGNETIC RESONANCE IMAGING: Proton and external magnetic field – precession – radiofrequency and resonance – MRI signal – relaxation time – MRI instrumentation – imaging sequences – biosafety
UNIT-V	PROJECT ASSIGNMENT: Clinical practice of <i>one</i> of the following: electro cardiogram, electro encephalogram, electro myogram, electro oculogram, computed tomography, positron emission tomography, ultrasound
TEXT BOOKS	 Leslie Cromwell, Fred Weibell, Erich Pfieffer (2002) Biomedical Instrumentation and Measurements Prentice Hall of India, New Delhi. R. S. Khandpur (2003) Handbook of Biomedical Instrumentation 2ndEdn. Tata McGraw Hill, New Delhi. Kuppusamy Thayalan (2017), Basic Radiological Physics 2ndEdn. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.
REFERENCE BOOKS	 John Webster (2004) Bioinstrumentation John Wiley and Sons, Singapore. John Enderle, Susan Blanchard, Joseph Bronzino (2005) Introduction to Biomedical Engineering, 2nd ed. Elsevier, San Deigo William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation therapy Physics 3rd ed. Wiley-Liss, New Jersey

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COURSE	CO1	Students learn about biometrics and audiometry
	CO2	Can acquire knowledge about ECG, EEG and EMG
OUTCOMES	CO3	Understand the basics of radiography
	CO4	Get depth knowledge of ultrasound imaging and MRI
	CO5	This course gives complete knowledge about medical instruments to visit clinical lab

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	Μ	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER - ELECTIVE COURSE 4				
COURSE TITLE					
CREDITS	4				
Course Objective	e: The students will learn the fundamentals, types of lasers, laser				
instrumentation and	d their applications also the interconnect between optics with lasers.				
UNITS	COURSE DETAILS				
	FUNDAMENTALS OF LASER: basic principles: spontaneous and				
	stimulated emission – Einstein's coefficient – pumping mechanism:				
UNIT-I	optical, electrical and laser pumping – population inversion – two and				
UNII-I	three level laser system – resonator configuration – quality factor –				
	threshold condition – concept of Q switching–Theory of mode locking–				
	cavity dumping.				
	TYPES OF LASERS: s olid state laser: ruby laser, Nd: YAG laser, Nd:				
	Glass laser- semiconductor laser: intrinsic semiconductor laser, doped				
UNIT-II	semiconductorlaser, injection laser – dye laser – chemical laser: HCL				
	laser, DF- CO ₂ , CO chemical laser. Gas laser: neutral atom gas laser				
	(He-Ne laser), CO ₂ laser, Copper vapour laser.				
	APPLICATIONS OF LASER: application of laser in metrology –				
	optical communication – material processing: laser instrumentation of				
UNIT-III	material processing, powder feeder, laser heating, laser welding, laser				
	melting – medical application – Laser instrumentation for surgeries-				
	laser in astronomy				

	FIBER OPTICS: basic components of optical fiber communication –					
	principles of light propagation through fiber – total internal reflection –					
	optical fiber – coherent bundle – numerical aperture and skew mode –					
UNIT-IV	phase shift and attenuation during total internal reflection – types of					
	fiber: single mode and multi-mode fiber - step index and graded index					
	fiber – fiber optic sensors – application of fiber optics.					
	CHARACTERISTICS AND FABRICATION OF OPTICAL					
	FIBER: fiber characteristics: mechanical and transmission					
UNIT-V	characteristics – absorption loss and scattering loss measurements –					
	dispersion – connectors and splicers – fiber termination – optical time					
	domain reflectometer (OTDR) and its uses - fiber material - fiber					
	fabrication – fiber optic cables design.					
	1. B. B. Laud - Laser and Non-linear Optics, New Age International					
	Publications Third Edition, New Delhi.					
TEXT BOOKS	2. An Introduction to laser, theory and applications by Avadhunulu, M.					
	N. S., Chand and Co, New Delhi					
	3. J. Wilson and J. F. B. Hawkes. 'Introduction to Opto Electronics',					
	Pearson Education, 2018.					
	1. A. Sennaroglu, Photonics and Laser Engineering: Principles,					
DEEDDINGE	Devices and Applications, McGraw – Hill Education, 2010.					
REFERENCE	2. K. R. Nambiar, "Lasers: Principles, Types and Applications", New					
BOOKS	Age International, 2004.					
	3. Optic, Ajoy Ghatak, McGraw-Hill Education (India) Pvt, Ltd, 6 th					
	Edn., 2017.					

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explore the fundamentals of lasers
COURSE	CO2	Understand the basics and principles of various types of lasers
OUTCOMES	CO3	Apply the various principles and concepts in day-to-day life
	CO4	Understand the basics and operations of optical fiber.
	CO5	To explore and apply the optical fiber to daily application.

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S

CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	SIXTH SEMESTER – PROFESSIONAL COMPETENCY SKILL - SEC-8
COURSE TITLE	PROBLEMS SOLVING SKILLS IN PHYSICS
CREDITS	2
Course Objective	To inculcate the problem-solving skills in different areas of physics
UNITS	COURSE DETAILS
UNIT-I	PROBLEMS IN MECHANICS: Newton laws of motion for various systems (1, 2 and 3 dimension), Conservation laws and collisions, Rotational mechanics, central force, Harmonic oscillator, special Relativity
UNIT-II	PROBLEMS IN THERMAL PHYSICS: Kinetic theory- MB distribution-Laws of thermodynamics–Ideal Gas law- Various Thermodynamic process- Entropy calculation for various process-Heat engine-TS and PV diagram-Free energies various relations
UNIT-III	PROBLEMS IN ELECTRICITY & MAGNETISM: Electrostatics- calculation of Electrostatic quantities for various configurations- Conductors, Magnetostatics- Calculation of Magnetic quantities for various configuration, Electromagnetic induction, Poynting vector, Electromagnetic waves
UNIT-IV	PROBLEMS IN QUANTUM MECHANICS: Origin of Quantum mechanics- Fundamental Principles of Quantum mechanics- potential wells and harmonic oscillator- Hydrogen atom
UNIT-V	PROBLEMS IN GENERAL PHYSICS& MATHEMATICS: Plotting the graphs for various elementary and composite functions- Elasticity- Viscosity and surface tension- fluids-Buoyancy-pressure- Bernoulli's theorem- applications-waves and oscillations, Errors and propagation of errors.
REFERENCE BOOKS	 Mechanics (in SI units) by Charles Kittel, Walter D knight etc. (Berkeley Physics course-volume 1), Tata McGraw Hill publication, second edition. Thermal physics by S. C. Garg, RM Bansal &CK Ghosh. (Tata McGraw Hill Publications), 1st edition. Electricity & magnetism (in SI units) by E. M. Purcell, Tata McGraw hill Publication, 2nd Edition. Quantum mechanics by N. Zettili, Wiley Publishers, second edition. Introduction to quantum mechanics by David. J. Griffith, Pearson Publications, second edition.

6. Fundamentals of Physics by Halliday & Resnick, Wiley
Publications, 8th Edition.
7. Advanced level physics by Nelkon and Parker, CBS publishers,
7th edition
8. Play with graphs by Amith Agarwal, Arihant Publications.
9. Properties of matter by D. S. Mathur, S. Chand Publications, 11th
Edition.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Think laterally and provide necessary solution
COURSE	CO2	Use appropriate mathematical methods to given problem
OUTCOMES	CO3	Verify whether the answer obtained is correct or not
OUTCOMED	CO4	Use logical and other skills to solve problem
	CO5	Clear all the entrance examinations leading higher education in
	005	premier institutions

MAPPING WITH PROGRAM OUT COMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

COURSE	FIRST SEMESTER – GENERIC ELECTIVE
COURSETITLE	PHYSICS – I
CREDITS	3
COURSE	To impart basic principles of Physics that which would be helpful for
OBJECTIVES	students who have taken programmes other than Physics.

UNITS	COURSE DETAILS
UNIT-I	WAVES, OSCILLATIONS AND ULTRASONICS: Simple harmonic motion (SHM) – composition of two SHMs at right angles (periods in the ratio 1:1) – Lissajous figures – uses – laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass wires) – ultrasound – production – piezoelectric method – application of ultrasonics: medical field – lithotripsy, ultrasonography – ultra sono imaging- ultrasonics in dentistry – physiotherapy, ophthalmology – advantages of noninvasive surgery – ultrasonics in green chemistry.
UNIT-II	 PROPERTIES OF MATTER: <i>Elasticity</i>: elastic constants – bending of beam – theory of non- uniform bending – determination of Young's modulus by non-uniform bending – energy stored in a stretched wire – torsion of a wire – determination of rigidity modulus by torsional pendulum <i>Viscosity</i>: Streamline and turbulent motion – critical velocity – coefficient of viscosity – Poiseuille's formula – comparison of viscosities – burette method, <i>Surface tension</i>: definition – molecular theory – droplets formation–shape, size and lifetime – COVID transmission through droplets, saliva – drop weight method – interfacial surface tension.
UNIT-III	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule- Thomson porous plug experiment – theory – temperature of inversion – liquefaction of Oxygen– Linde's process of liquefaction of air– liquid Oxygen for medical purpose– importance of cryocoolers– thermodynamic system – thermodynamic equilibrium – laws of thermodynamics – heat engine – Carnot's cycle – efficiency – entropy – change of entropy in reversible and irreversible process.
UNIT-IV	ELECTRICITY AND MAGNETISM: Potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – types of switches in household and factories– Smart wifi switches- fuses and circuit breakers in houses

UNIT-V	DIGITAL ELECTRONICS AND DIGITAL INDIA: Logic gates, OR, AND, NOT, NAND, NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's theorem – verification – overview of Government initiatives: software technological parks under MeitY, NIELIT- semiconductor laboratories under Dept. of Space – an introduction to Digital India
UNIT-VI	PROFESSIONAL COMPONENTS: Expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R. Murugesan (2001), Allied Physics, S. Chand and Co, New Delhi. Brij Lal and N. Subramanyam (1994), Waves and Oscillations, Vikas Publishing House, New Delhi. Brij Lal and N. Subramaniam (1994), Properties of Matter, S. Chand and Co., New Delhi. J. B. Rajam and C. L. Arora (1976). Heat and Thermodynamics (8th edition), S. Chand and Co., New Delhi. R. Murugesan (2005), Optics and Spectroscopy, S. Chand and Co, New Delhi. A. Subramaniyam, Applied Electronics 2ndEdn., National Publishing Co., Chennai. Resnick Halliday and Walker (2018). Fundamentals of Physics
REFERENCE BOOKS	 (11thedition), John Willey and Sons, Asia Pvt. Ltd., Singapore. V. R. Khanna and R. S. Bedi (1998), Textbook of Sound, 1stEdn. Kedharnaath Publish and Co, Meerut.9944464657 N. S. Khare and S. S. Srivastava (1983), Electricity and Magnetism10thEdn., Atma Ram and Sons, New Delhi. D. R. Khanna and H.R. Gulati (1979). Optics, S. Chand and Co. Ltd., New Delhi. V. K. Metha (2004). Principles of electronics 6thEdn. S. Chand and company.
WEB RESOURCES	 https://youtu.be/M_5KYncYNyc https://youtu.be/ljJLJgIvaHY https://youtu.be/7mGqd9HQ_AU https://youtu.be/h5jOAw57OXM https://learningtechnologyofficial.com/category/fluid- mechanics-lab/ http://hyperphysics.phyastr.gsu.edu/hbase/permot2.htmlhttps://w ww.youtube.com/watch?v=gT8Nth9NWPMhttps://www.youtub e.com/watch?v=9mXOMzUruMQandt=1shttps://www.youtube. com/watch?v=m4uSuaSu1sandt=3shttps://www.biolinscientific. com/blog/what-are-surfactants-and-how-do-they-work

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explain types of motion and extend their knowledge in the study of various dynamic motions analyze and demonstrate mathematically. Relate theory with practical applications in medical field.
	CO2	Explain their knowledge of understanding about materials and their behaviors and apply it to various situations in laboratory and real life. Connect droplet theory with Corona transmission.
COURSE OUTCOMES	CO3	Comprehend basic concept of thermodynamics concept of entropy and associated theorems able to interpret the process of flow temperature physics in the background of growth of this technology.
OUTCOMES	CO4	Articulate the knowledge about electric current resistance, capacitance in terms of potential electric field and electric correlatetheconnectionbetweenelectricfieldandmagneticfieldan danalyze them mathematically verify circuits and apply the concepts to construct circuits and study them.
	CO5	Interpret the real-life solutions using AND, OR, NOT basic logic gates and intend their ideas to universal building blocks. InferoperationsusingBooleanalgebraandacquireelementaryidea sofICcircuits.Acquire information about various Govt. programs/ institutions in this field.

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	ODD SEMESTER – GENERIC ELECTIVE
COURSETITLE	PHYSICS PRACTICAL– I
CREDITS	2
COURSE OBJECTIVES	Apply various physics concepts to understand Properties of Matter and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results
	analyse, able to do error analysis and correlate results

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass

- 6. Surface tension and interfacial Surface tension drop weight method
- 7. Comparison of viscosities of two liquids burette method
- 8. Specific heat capacity of a liquid half time correction
- 9. Verification of laws of transverse vibrations using sonometer
- 10. Calibration of low range voltmeter using potentiometer
- 11. Determination of thermo emf using potentiometer
- 12. Verification of truth tables of basic logic gates using ICs
- 13. Verification of De Morgan's theorems using logic gate ICs.
- 14. Use of NAND as universal building block.
- *Note*: Use of digital balance permitted

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SECOND SEMESTER – GENERIC ELECTIVE
COURSE TITLE	PHYSICS –II
CREDITS	3
COURSE OBJECTIVES	To understand the basic concepts of optics, modern Physics, concepts of relativity and quantum physics, semiconductor physics, and electronics.
UNITS	COURSE DETAILS
UNIT-I	OPTICS: Interference – interference in thin films –colors of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double reflection – Brewster's law – optical activity – application in sugar industries ATOMIC PHYSICS: Atom models – Bohr atom model – mass
UNIT-II	number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton – Stark effect –Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation – applications of photoelectric effect: solar cells, solar panels, optoelectric devices
UNIT-III	NUCLEAR PHYSICS: Nuclear models – liquid drop model – magic numbers – shell model – nuclear energy – mass defect – binding energy – radioactivity – uses – half life – mean life - radio isotopes and uses –controlled and uncontrolled chain reaction – nuclear fission – energy released in fission – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor – breeder reactor – importance of commissioning PFBR in our country – heavy water disposal, safety of reactors: seismic and floods – introduction to DAE, IAEA – nuclear fusion – thermonuclear reactions – differences between fission and fusion.

	INTRODUCTION TO RELATIVITY AND
UNIT-IV	GRAVITATIONAL WAVES : Frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction –
UNIT-IV	time dilation – twin paradox – mass-energy equivalence – introduction on gravitational waves, LIGO, ICTS opportunities at International Centre for Theoretical Sciences
	SEMICONDUCTOR PHYSICS: p-n junction diode – forward and
	reverse biasing - characteristic of diode - zener diode -
UNIT-V	characteristic of zener diode – voltage regulator – full wave bridge
	rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and
	EV charging stations
	PROFESSIONAL COMPONENTS: Expert lectures –seminars –
UNIT-VI	– webinars – industry inputs – social accountability – patriotism
	1. R. Murugesan (2005), Allied Physics, S. Chand and Co, New
	Delhi.2. K. Thangaraj and D. Jayaraman (2004), Allied Physics, Popular
	2. K. Thangaraj and D. Jayaraman (2004), Amed Physics, Popular Book Depot, Chennai.
	3. Brij Lal and N. Subramanyam (2002), Text book of Optics, S.
TEXT BOOKS	Chand and Co, New Delhi.
	4. R. Murugesan (2005), Modern Physics, S. Chand and Co, New
	Delhi.
	5. A. Subramaniyam Applied Electronics, 2 nd Edn., National Publishing Co., Chennai.
	1. Resnick Halliday and Walker (2018), Fundamentals of Physics,
	11 th Edn., John Willey and Sons, Asia Pvt. Ltd., Singapore.
	2. D. R. Khanna and H.R. Gulati (1979). Optics, S. Chand and Co.
DEFEDENCE	Ltd., New Delhi.
REFERENCE BOOKS	3. A. Beiser (1997), Concepts of Modern Physics, Tata McGraw Hill Publication, New Delhi.
DUUKS	4. Thomas L. Floyd (2017), Digital Fundamentals, 11 th Edn.,
	Universal Book Stall, New Delhi.
	5. V. K. Metha (2004), Principles of electronics, 6 th Edn., S. Chand
	and Company, New Delhi.
	1. <u>https://www.berkshire.com/learning-center/delta-p-</u> facemask/https://www.youtube.com/watch?v=QrhxU47gtj4htt
	ps://www.youtube.com/watch?time_continue=318andv=D38Bj
	gUdL5Uandfeature=emb_logo
WEB	2. <u>https://www.youtube.com/watch?v=JrRrp5F-Qu4</u>
RESOURCES	3. <u>https://www.validyne.com/blog/leak-test-using-pressure-</u>
	transducers/
	 4. <u>https://www.atoptics.co.uk/atoptics/blsky.htm</u>- 5. https://www.metoffice.gov.uk/weather/learn-
	5. <u>https://www.metoffice.gov.uk/weather/learn-</u> about/weather/optical-effects
	about/ weather/optical=effects

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Explain the concepts of interference diffraction using principles of superposition of waves and rephrase the concept of polarization based on wave patterns
	CO2	Outline the basic foundation of different atom models and various experiments establishing quantum concepts. Relate the importance of interpreting improving the oretical models based on observation. Appreciate interdisciplinary nature of science and in solar energy related applications.
COURSE OUTCOMES	CO3	Summarize the properties of nuclei, nuclear forces structure of atomic nucleus and nuclear models. Solve problems on delay rate half-life and mean-life. Interpret nuclear processes like fission and fusion. Understand the importance of nuclear energy, safety measures carried and get our Govt. agencies like DAE guiding the country in the nuclear field.
	CO4	To describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation. Extend their knowledge on concepts of relativity and vice versa. Relate this with current research in this field and get an overview of research projects of National and International importance, like LIGO, ICTS, and opportunities available.
	CO5	Summarize the working of semiconductor devices like junction diode, Zener diode, transistors and practical devices we daily use like USB chargers and EV charging stations.

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

COURSE	EVEN SEMESTER – GENERIC ELECTIVE				
COURSE TITLE	PHYSICS PRACTICAL- II				
CREDITS	2				
	Apply various Physics concepts to understand concepts of Light,				
COURSE	electricity and magnetism and waves, set up experimentation to verify				
OBJECTIVES	theories, quantify and analyse, able to do error analysis and correlate				
	results				
	t Experiments from the list:				
	vature of lens by forming Newton's rings				
	a wire using air wedge				
	of mercury lines using spectrometer and grating				
	4. Refractive index of material of the lens by minimum deviation				
6. Determination	Determination of AC frequency using sonometer				
7. Specific resistance of a wire using PO box					
8. Thermal conductivity of poor conductor using Lee's disc					
9. Determination	9. Determination of figure of merit table galvanometer				
10. Determination of Earth's magnetic field using field along the axis of a coil					
11. Characterisation of Zener diode					
12. Construction of Zerner/IC regulated power supply					
13. Construction	13. Construction of AND, OR, NOT gates using diodes and transistor				
14. NOR gate as	14. NOR gate as a universal building block				

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

For M.Sc Computer Science and Technology (Five Years integrated)

COURSE	FIRST SEMESTER – GENERIC ELECTIVE
COURSE TITLE	PHYSICS – I
CREDITS	5
COURSE OBJECTIVES	This paper introduces the student to the concepts of Transistor, semiconductors and Laser

UNITS	COURSE DETAILS		
UNIT-I	SEMICONDUCTOR DIODE: Introduction - on junction - current voltage characteristic of a semiconductor diode -Zener diode as a voltage Regulator - Tunnel diode - Schottkey diode - optoelectronic devices -light emitting diode - photo diodes.		
UNIT-II	THE BASIC TRANSISTORS: The bipolar junction transistor - transistor biasing - transistor circuit configurations -common base (CB) Common emitter (CE) Common collector (CC) configurations -CB, CE, CC static characteristics - construction of OR, AND and NOR gates using transistors - logic gate parameters - logic families - resistor transistor logic (RTL) - diode transistor logic (DTL) -transistor transistor logic (TTL) - fabrication of ICS.		
UNIT-III	ELECTRONIC INSTRUMENTS: Introduction - multimeter - multimeter as voltmeter - multimeter as ohm meter - applications of multimeter - sensitivity of multimeter - merits and demerits of multimeter - cathode ray oscilloscope.		
UNIT-IV	LASERS: Atomic structure - Bohr's atomic model - energy levels - energy bands in solids -basic principle of laser operation - population inversion - construction and working of He-Ne laser - CO2 laser - Ruby laser - semiconductor laser – applications.		
UNIT-V	FIBER OPTIC COMMUNICATION SYSTEMS: Introduction to communication - types of optical fibers - single and bundled fibers - fibers materials – attenuation - dispersion fiber optic light sources – detectors - fiber optic communications.		
TEXT BOOKS	 Elements of Electronics, M. K. Badge and S. P. Singh, S. Chand & Co, 1987 Basic Electronics Solid state, B. C. Theraja, S. Chand & Co 1995 Principles of Electronics - V. K. Metha, S. Chand & Co, 199 		

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Acquire knowledge of semiconductors
	CO2	Understand the basics of transistors
COURSE	CO3	Emphasize the significance of electronics instruments
OUTCOMES	CO4	Can acquire knowledge about Lasers
	CO5	Understand the fibre optic communication

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3

COURSE	SECOND SEMESTER – GENERIC ELECTIVE
COURSE TITLE	PHYSICS – II
CREDITS	5
COURSE	This paper introduces the student to the concept electric, dielectric and
OBJECTIVES	magnetic materials
UNITS	COURSE DETAILS
UNIT-I	ELECTRICAL PROPERTIES: Free electron of Drude and Lorentz - Weidman Franz Law - Distinction between Conductor, Semiconductors, Insulators on the basis of band theory - Factors affecting resistivity of a conductor: Temperature, Allowing, Pressure, Strain, Magnetic field and environment.
UNIT-II	MAGENETIC MATERIALS: Magnetic material - classification of magnetic materials, ferromagnetism: Domain theory - Hysteresis - Hard and Soft magnetic materials - Curie - Weiss law - Magnetostriction, Ferrites: Preparation, Properties, Applications - Magnetic bubble memory, Magnetic recording - Writing magnetic data – Reading magnetic data - Storage of magnetic data

	DIELECTRIC MATERIALS:						
UNIT-III	Qualitative study of three types of polarization - effect of temperature and frequency on dielectric constant - dielectric loss - Ferro electric materials - Behaviour of barium titanate - Piezo - electric materials - Breakdown mechanism - Classification of insulating materials on temperature basis.						
	SUPER CONDUCTORS:						
	Qualitative study of the Phenomenon - Critical temperature and critical						
UNIT-IV	field. Meissner effect - Type I and II superconductors. BCS theory of						
	superconductivity (Qualitative) - High temperature superconductor.						
	Applications: Crypton, magnetic levitation -Superconducting magnets.						
	MODERN ENGINEERING MATERIALS:						
	Metallic glasses as transformer core material - Nanophase materials -						
UNIT-V	Synthesis -Variation of physical properties with Geometry - Shape						
	memory alloys - Characteristics of SMA - Thermomechanical behavior						
	- commercial SMA - Applications - Biomaterials						
	1. R. Raghavan V; "Material Science and Engg A first Course";						
	PHI; 1991.						
	2. 2. Arumugam M; "Material Science"; Anuradha Pub. 1994.						
TEXT BOOKS	3. 3. P.K. Palanisamy; "Material Science"; Scitech; 2002.						
	4. 4. Setha & Gupta; "Course in electrical Engg materials";						
	Dhanpat Raj & Sons 1990.						
AETHOD OF EVAL							

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Acquire knowledge of electrical properties
	CO2	Understand the basics of magnetic materials
COURSE OUTCOMES	CO3	Learn about dielectric materials
	CO4	Can acquire knowledge about super conductors
	CO5	Learn about modern engineering materials

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	S	М	Μ	S	М	S

CO2	М	S	S	S	Μ	Μ	S	М	S	S
CO3	S	М	S	Μ	S	S	М	S	S	S
CO4	S	S	S	S	S	М	S	М	М	М
CO5	Μ	М	S	S	Μ	S	S	S	S	М